Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 24111, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916566

RESUMO

The insertion losses of miniature gold/silicon-on-insulator (SOI) coplanar waveguides (CPW) are rendered low, stable, and light insensitive when covered with a thin film (95 nm) fluoropolymer deposited by a trifluoromethane (CHF3) plasma. Microwave characterization (0-50 GHz) of the CPWs indicates that the fluoropolymer stabilizes a hydrogen-passivated silicon surface between the CPW tracks. The hydrophobic nature of the fluoropolymer acts as a humidity barrier, meaning that the underlying intertrack silicon surfaces do not re-oxidize over time-something that is known to increase losses. In addition, the fluoropolymer thin film also renders the CPW insertion losses insensitive to illumination with white light (2400 lx)-something potentially advantageous when using optical microscopy observations during microwave measurements. Capacitance-voltage (CV) measurements of gold/fluoropolymer/silicon metal-insulator-semiconductor (MIS) capacitors indicate that the fluoropolymer is an electret-storing positive charge. The experimental results suggest that the stored positive charge in the fluoropolymer electret and charge trapping influence surface-associated losses in CPW-MIS device modelling supports this. Finally, and on a practical note, the thin fluoropolymer film is easily pierced by commercial microwave probes and does not adhere to them-facilitating the repeatable and reproducible characterization of microwave electronic circuitry passivated by thin fluoropolymer.

2.
Nanoscale ; 8(29): 14097-103, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27396243

RESUMO

Graphene has been regarded as a promising candidate channel material for flexible devices operating at radio-frequency (RF). In this work we fabricated and fully characterized double bottom-gate graphene field effect transistors on flexible polymer substrates for high frequency applications. We report a record high as-measured current gain cut-off frequency (ft) of 39 GHz. The corresponding maximum oscillation frequency (fmax) is 13.5 GHz. These state of the art high frequency performances are stable against bending, with a typical variation of around 10%, for a bending radius of up to 12 mm. To demonstrate the reliability of our devices, we performed a fatigue stress test for RF-GFETs which were dynamically bend tested 1000 times at 1 Hz. The devices are mechanically robust, and performances are stable with typical variations of 15%. Finally we investigate thermal dissipation, which is a critical parameter for flexible electronics. We show that at the optimum polarization the normalized power dissipated by the GFETs is about 0.35 mW µm(-2) and that the substrate temperature is around 200 degree centigrade. At a higher power, irreversible degradations of the performances are observed. Our study on state of the art flexible GFETs demonstrates mechanical robustness and stability upon heating, two important elements to assess the potential of GFETs for flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...