Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 747661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745181

RESUMO

Ramularia collo-cygni is the causal agent of Ramularia leaf spot disease (RLS) on barley and became, during the recent decades, an increasing threat for farmers across the world. Here, we analyze morphological, transcriptional, and metabolic responses of two barley cultivars having contrasting tolerance to RLS, when infected by an aggressive or mild R. collo-cygni isolate. We found that fungal biomass in leaves of the two cultivars does not correlate with their tolerance to RLS, and both cultivars displayed cell wall reinforcement at the point of contact with the fungal hyphae. Comparative transcriptome analysis identified that the largest transcriptional differences between cultivars are at the early stages of fungal colonization with differential expression of kinases, calmodulins, and defense proteins. Weighted gene co-expression network analysis identified modules of co-expressed genes, and hub genes important for cultivar responses to the two R. collo-cygni isolates. Metabolite analyses of the same leaves identified defense compounds such as p-CHDA and serotonin, correlating with responses observed at transcriptome and morphological level. Together these all-round responses of barley to R. collo-cygni provide molecular tools for further development of genetic and physiological markers that may be tested for improving tolerance of barley to this fungal pathogen.

2.
Science ; 373(6556): 774-779, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385392

RESUMO

The oomycete Phytophthora infestans is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by P. infestans We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in P. infestans inhibits infection of potato, indicating a role in host penetration. The identification of LPMOs as virulence factors in pathogenic oomycetes opens up opportunities in crop protection and food security.


Assuntos
Oxigenases de Função Mista/metabolismo , Pectinas/metabolismo , Phytophthora infestans/enzimologia , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Solanum tuberosum/parasitologia , Cobre , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Oxirredução , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Folhas de Planta/parasitologia , Polissacarídeos/metabolismo , Conformação Proteica , Domínios Proteicos , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Theor Appl Genet ; 133(4): 1243-1264, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31965232

RESUMO

KEY MESSAGE: Diagnostic markers for Rrs1Rh4 have been identified by testing for associations between SNPs within the Rrs1 interval in 150 barley genotypes and their resistance to Rhynchosporium commune isolates recognised by lines containing Rrs1. Rhynchosporium or barley scald, caused by the destructive fungal pathogen Rhynchosporium commune, is one of the most economically important diseases of barley in the world. Barley landraces from Syria and Jordan demonstrated high resistance to rhynchosporium in the field. Genotyping of a wide range of barley cultivars and landraces, including known sources of different Rrs1 genes/alleles, across the Rrs1 interval, followed by association analysis of this genotypic data with resistance phenotypes to R. commune isolates recognised by Rrs1, allowed the identification of diagnostic markers for Rrs1Rh4. These markers are specific to Rrs1Rh4 and do not detect other Rrs1 genes/alleles. The Rrs1Rh4 diagnostic markers represent a resource that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars. Thirteen out of the 55 most resistant Syrian and Jordanian landraces were shown to contain markers specific to Rrs1Rh4. One of these lines came from Jordan, with the remaining 12 lines from different locations in Syria. One of the Syrian landraces containing Rrs1Rh4 was also shown to have Rrs2. The remaining landraces that performed well against rhynchosporium in the field are likely to contain other resistance genes and represent an important novel resource yet to be exploited by European breeders.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Loci Gênicos , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Alelos , Segregação de Cromossomos/genética , Ecótipo , Exoma/genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Geografia , Proteínas de Fluorescência Verde/metabolismo , Jordânia , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Síria
4.
Theor Appl Genet ; 132(4): 1089-1107, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30547184

RESUMO

KEY MESSAGE: Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere on the short arm of chromosome 6H in barley. Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most destructive and economically important diseases of barley in the world. Testing of Steptoe × Morex and CIho 3515 × Alexis doubled haploid populations has revealed a large effect QTL for resistance to R. commune close to the telomere on the short arm of chromosome 6H, present in both populations. Mapping markers flanking the QTL from both populations onto the 2017 Morex genome assembly revealed a rhynchosporium resistance locus independent of Rrs13 that we named Rrs18. The causal gene was fine mapped to an interval of 660 Kb using Steptoe × Morex backcross 1 S2 and S3 lines with molecular markers developed from Steptoe exome capture variant calling. Sequencing RNA from CIho 3515 and Alexis revealed that only 4 genes within the Rrs18 interval were transcribed in leaf tissue with a serine/threonine protein kinase being the most likely candidate for Rrs18.


Assuntos
Ascomicetos/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Cruzamentos Genéticos , Genes de Plantas , Marcadores Genéticos , Anotação de Sequência Molecular , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
5.
Theor Appl Genet ; 131(12): 2513-2528, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30151748

RESUMO

KEY MESSAGE: Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1. Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Hordeum/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Hordeum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
6.
New Phytol ; 214(4): 1657-1672, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28386988

RESUMO

Pathogen-associated molecular patterns (PAMPs) are detected by plant pattern recognition receptors (PRRs), which gives rise to PAMP-triggered immunity (PTI). We characterized a novel fungal PAMP, Cell Death Inducing 1 (RcCDI1), identified in the Rhynchosporium commune transcriptome sampled at an early stage of barley (Hordeum vulgare) infection. The ability of RcCDI1 and its homologues from different fungal species to induce cell death in Nicotiana benthamiana was tested following agroinfiltration or infiltration of recombinant proteins produced by Pichia pastoris. Virus-induced gene silencing (VIGS) and transient expression of Phytophthora infestans effectors PiAVR3a and PexRD2 were used to assess the involvement of known components of PTI in N. benthamiana responses to RcCDI1. RcCDI1 was highly upregulated early during barley colonization with R. commune. RcCDI1 and its homologues from different fungal species, including Zymoseptoria tritici, Magnaporthe oryzae and Neurospora crassa, exhibited PAMP activity, inducing cell death in Solanaceae but not in other families of dicots or monocots. RcCDI1-triggered cell death was shown to require N. benthamiana Brassinosteroid insensitive 1-Associated Kinase 1 (NbBAK1), N. benthamiana suppressor of BIR1-1 (NbSOBIR1) and N. benthamiana SGT1 (NbSGT1), but was not suppressed by PiAVR3a or PexRD2. We report the identification of a novel Ascomycete PAMP, RcCDI1, recognized by Solanaceae but not by monocots, which activates cell death through a pathway that is distinct from that triggered by the oomycete PAMP INF1.


Assuntos
Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Solanaceae/microbiologia , Sequência de Aminoácidos , Ascomicetos/genética , Ascomicetos/fisiologia , Morte Celular , Sequência Conservada , Proteínas Fúngicas/genética , Hordeum/microbiologia , Filogenia , Células Vegetais/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanaceae/citologia , Nicotiana/genética , Nicotiana/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
BMC Genomics ; 17(1): 953, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27875982

RESUMO

BACKGROUND: The Rhynchosporium species complex consists of hemibiotrophic fungal pathogens specialized to different sweet grass species including the cereal crops barley and rye. A sexual stage has not been described, but several lines of evidence suggest the occurrence of sexual reproduction. Therefore, a comparative genomics approach was carried out to disclose the evolutionary relationship of the species and to identify genes demonstrating the potential for a sexual cycle. Furthermore, due to the evolutionary very young age of the five species currently known, this genus appears to be well-suited to address the question at the molecular level of how pathogenic fungi adapt to their hosts. RESULTS: The genomes of the different Rhynchosporium species were sequenced, assembled and annotated using ab initio gene predictors trained on several fungal genomes as well as on Rhynchosporium expressed sequence tags. Structures of the rDNA regions and genome-wide single nucleotide polymorphisms provided a hypothesis for intra-genus evolution. Homology screening detected core meiotic genes along with most genes crucial for sexual recombination in ascomycete fungi. In addition, a large number of cell wall-degrading enzymes that is characteristic for hemibiotrophic and necrotrophic fungi infecting monocotyledonous hosts were found. Furthermore, the Rhynchosporium genomes carry a repertoire of genes coding for polyketide synthases and non-ribosomal peptide synthetases. Several of these genes are missing from the genome of the closest sequenced relative, the poplar pathogen Marssonina brunnea, and are possibly involved in adaptation to the grass hosts. Most importantly, six species-specific genes coding for protein effectors were identified in R. commune. Their deletion yielded mutants that grew more vigorously in planta than the wild type. CONCLUSION: Both cryptic sexuality and secondary metabolites may have contributed to host adaptation. Most importantly, however, the growth-retarding activity of the species-specific effectors suggests that host adaptation of R. commune aims at extending the biotrophic stage at the expense of the necrotrophic stage of pathogenesis. Like other apoplastic fungi Rhynchosporium colonizes the intercellular matrix of host leaves relatively slowly without causing symptoms, reminiscent of the development of endophytic fungi. Rhynchosporium may therefore become an object for studying the mutualism-parasitism transition.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Genoma Fúngico , Genômica , Especificidade de Hospedeiro , Filogenia , Poaceae/microbiologia , Sequência de Aminoácidos , Ascomicetos/metabolismo , DNA Intergênico , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genômica/métodos , Família Multigênica , Metabolismo Secundário/genética
8.
BMC Microbiol ; 14: 308, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25492044

RESUMO

BACKGROUND: The oomycete Phytophthora infestans possesses active RNA silencing pathways, which presumably enable this plant pathogen to control the large numbers of transposable elements present in its 240 Mb genome. Small RNAs (sRNAs), central molecules in RNA silencing, are known to also play key roles in this organism, notably in regulation of critical effector genes needed for infection of its potato host. RESULTS: To identify additional classes of sRNAs in oomycetes, we mapped deep sequencing reads to transfer RNAs (tRNAs) thereby revealing the presence of 19-40 nt tRNA-derived RNA fragments (tRFs). Northern blot analysis identified abundant tRFs corresponding to half tRNA molecules. Some tRFs accumulated differentially during infection, as seen by examining sRNAs sequenced from P. infestans-potato interaction libraries. The putative connection between tRF biogenesis and the canonical RNA silencing pathways was investigated by employing hairpin RNA-mediated RNAi to silence the genes encoding P. infestans Argonaute (PiAgo) and Dicer (PiDcl) endoribonucleases. By sRNA sequencing we show that tRF accumulation is PiDcl1-independent, while Northern hybridizations detected reduced levels of specific tRNA-derived species in the PiAgo1 knockdown line. CONCLUSIONS: Our findings extend the sRNA diversity in oomycetes to include fragments derived from non-protein-coding RNA transcripts and identify tRFs with elevated levels during infection of potato by P. infestans.


Assuntos
Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , RNA de Transferência/metabolismo , Solanum tuberosum/microbiologia , Northern Blotting , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência/química , RNA de Transferência/genética
9.
Commun Integr Biol ; 6(6): e25890, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24563702

RESUMO

Advances in genome sequencing technologies have enabled generation of unprecedented information on genome content and organization. Eukaryote genomes in particular may contain large populations of transposable elements (TEs) and other repeated sequences. Active TEs can result in insertional mutations, altered transcription levels and ectopic recombination of DNA. The genome of the oomycete plant pathogen, Phytophthora infestans, contains vast numbers of TE sequences. There are also hundreds of predicted disease-promoting effector proteins, predominantly located in TE-rich genomic regions. Expansion of effector gene families is also a genomic signature of related oomycetes such as P. sojae. Deep sequencing of small RNAs (sRNAs) from P. infestans has identified sRNAs derived from all families of transposons, highlighting the importance of RNA silencing for maintaining these genomic invaders in an inactive form. Small RNAs were also identified from specific effector encoding genes, possibly leading to RNA silencing of these genes and variation in pathogenicity and virulence toward plant resistance genes. Similar findings have also recently been made for the distantly related species, P. sojae. Small RNA "hotspots" originating from arrays of amplified gene sequences, or from genes displaying overlapping antisense transcription, were also identified in P. infestans. These findings suggest a major role for RNA silencing processes in the adaptability and diversification of these economically important plant pathogens. Here we review the latest progress and understanding of gene silencing in oomycetes with emphasis on transposable elements and sRNA-associated events.

10.
PLoS One ; 7(12): e51399, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272103

RESUMO

Phytophthora infestans is the oomycete pathogen responsible for the devastating late blight disease on potato and tomato. There is presently an intense research focus on the role(s) of effectors in promoting late blight disease development. However, little is known about how they are regulated, or how diversity in their expression may be generated among different isolates. Here we present data from investigation of RNA silencing processes, characterized by non-coding small RNA molecules (sRNA) of 19-40 nt. From deep sequencing of sRNAs we have identified sRNAs matching numerous RxLR and Crinkler (CRN) effector protein genes in two isolates differing in pathogenicity. Effector gene-derived sRNAs were present in both isolates, but exhibited marked differences in abundance, especially for CRN effectors. Small RNAs in P. infestans grouped into three clear size classes of 21, 25/26 and 32 nt. Small RNAs from all size classes mapped to RxLR effector genes, but notably 21 nt sRNAs were the predominant size class mapping to CRN effector genes. Some effector genes, such as PiAvr3a, to which sRNAs were found, also exhibited differences in transcript accumulation between the two isolates. The P. infestans genome is rich in transposable elements, and the majority of sRNAs of all size classes mapped to these sequences, predominantly to long terminal repeat (LTR) retrotransposons. RNA silencing of Dicer and Argonaute genes provided evidence that generation of 21 nt sRNAs is Dicer-dependent, while accumulation of longer sRNAs was impacted by silencing of Argonaute genes. Additionally, we identified six microRNA (miRNA) candidates from our sequencing data, their precursor sequences from the genome sequence, and target mRNAs. These miRNA candidates have features characteristic of both plant and metazoan miRNAs.


Assuntos
Elementos de DNA Transponíveis , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Pequeno RNA não Traduzido/genética , RNA/genética , Northern Blotting , Mapeamento Cromossômico/métodos , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Solanum lycopersicum , MicroRNAs/metabolismo , Modelos Biológicos , Modelos Genéticos , Doenças das Plantas/microbiologia , Interferência de RNA , Solanum tuberosum , Sequências Repetidas Terminais
11.
Mob Genet Elements ; 2(2): 110-114, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22934246

RESUMO

Transposable elements are ubiquitous residents in eukaryotic genomes. Often considered to be genomic parasites, they can lead to dramatic changes in genome organization, gene expression, and gene evolution. The oomycete plant pathogen Phytophthora infestans has evolved a genome organization where core biology genes are predominantly located in genome regions that have relatively few resident transposons. In contrast, disease effector-encoding genes are most frequently located in rapidly evolving genomic regions that are rich in transposons. P. infestans, as a eukaryote, likely uses RNA silencing to minimize the activity of transposons. We have shown that fusion of a short interspersed element (SINE) to an effector gene in P. infestans leads to the silencing of both the introduced fusion and endogenous homologous sequences. This is also likely to occur naturally in the genome of P. infestans, as transcriptional inactivation of effectors is known to occur, and over half of the translocated "RXLR class" of effectors are located within 2 kb of transposon sequences in the P. infestans genome. In this commentary, we review the diverse transposon inventory of P. infestans, its control by RNA silencing, and consequences for expression modulation of nearby effector genes in this economically important plant pathogen.

12.
Mol Plant Pathol ; 13(9): 986-97, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22738626

RESUMO

Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus. TAXONOMY: Rhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza. DISEASE SYMPTOMS: Rhynchosporium commune causes scald-like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf. LIFE CYCLE: Rhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn-sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development. DETECTION AND QUANTIFICATION: Rhynchosporium commune produces unique beak-shaped, one-septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season. DISEASE CONTROL: The main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance.


Assuntos
Agricultura , Ascomicetos/fisiologia , Hordeum/crescimento & desenvolvimento , Hordeum/microbiologia , Ascomicetos/classificação , Hordeum/imunologia , Especificidade de Hospedeiro/imunologia , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos
13.
Fungal Biol ; 115(12): 1225-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22115441

RESUMO

Phytophthora infestans is the notorious oomycete causing late blight of potato and tomato. A large proportion of the P. infestans genome is composed of transposable elements, the activity of which may be controlled by RNA silencing. Accumulation of small RNAs is one of the hallmarks of RNA silencing. Here we demonstrate the presence of small RNAs corresponding to the sequence of a short interspersed retrotransposable element (SINE) suggesting that small RNAs might be involved in silencing of SINEs in P. infestans. This notion was exploited to develop novel tools for gene silencing in P. infestans by engineering transcriptional fusions of the PiAvr3a gene, encoding an RXLR avirulence effector, to the infSINEm retroelement. Transgenic P. infestans lines expressing either 5'-infSINEm::PiAvr3a-3' or 5'-PiAvr3a::SINEm-3' chimeric transcripts initially exhibited partial silencing of PiAvr3a. Over time, PiAvr3a either recovered wild type transcript levels in some lines, or became fully silenced in others. Introduction of an inverted repeat construct was also successful in yielding P. infestans transgenic lines silenced for PiAvr3a. In contrast, constructs expressing antisense or aberrant RNA transcripts failed to initiate silencing of PiAvr3a. Lines exhibiting the most effective silencing of PiAvr3a were either weakly or non-pathogenic on susceptible potato cv. Bintje. This study expands the repertoire of reverse genetics tools available for P. infestans research, and provides insights into a possible mode of variation in effector expression through spread of silencing from adjacent retroelements.


Assuntos
Inativação Gênica , Phytophthora infestans/genética , Genética Reversa/métodos , Elementos Nucleotídeos Curtos e Dispersos , Fatores de Virulência/genética , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidade , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Transcrição Gênica , Virulência , Fatores de Virulência/metabolismo
14.
Mol Plant Pathol ; 12(8): 772-85, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21726377

RESUMO

Gene silencing may have a direct or indirect impact on many biological processes in eukaryotic cells, and is a useful tool for the determination of the roles of specific genes. In this article, we report silencing in Phytophthora infestans, an oomycete pathogen of potato and tomato. Gene silencing is known to occur in P. infestans, but its genetic basis has yet to be determined. Genes encoding the major components of the RNA interference (RNAi) pathway, Dicer-like (Pidcl1), Argonaute (Piago1-5) and RNA-directed RNA polymerase (Pirdr1), were identified in the P. infestans genome by comparative genomics, together with families of other genes potentially involved in gene silencing, such as histone deacetylases, histone methyltransferases, DEAD helicases, chromodomain proteins and a class 1 RNaseIII. Real-time reverse transcription-polymerase chain reaction demonstrated transcript accumulation for all candidate genes throughout the asexual lifecycle and plant infection, but at different levels of mRNA abundance. A functional assay was developed in which silencing of the sporulation-associated Picdc14 gene was released by the treatment of protoplasts with in vitro-synthesized double-stranded RNAs homologous to Pidcl1, Piago1/2 and histone deacetylase Pihda1. These results suggest that the components of gene silencing, namely Dicer-like, Argonaute and histone deacetylase, are functional in P. infestans. Our data demonstrate that this oomycete possesses canonical gene silencing pathways similar to those of other eukaryotes.


Assuntos
Phytophthora infestans/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Inativação Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Solanum lycopersicum/microbiologia , Filogenia , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , Interferência de RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solanum tuberosum/microbiologia
15.
New Phytol ; 191(3): 763-776, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21539575

RESUMO

• A detailed molecular understanding of how oomycete plant pathogens evade disease resistance is essential to inform the deployment of durable resistance (R) genes. • Map-based cloning, transient expression in planta, pathogen transformation and DNA sequence variation across diverse isolates were used to identify and characterize PiAVR2 from potato late blight pathogen Phytophthora infestans. • PiAVR2 is an RXLR-EER effector that is up-regulated during infection, accumulates at the site of haustoria formation, and is recognized inside host cells by potato protein R2. Expression of PiAVR2 in a virulent P. infestans isolate conveys a gain-of-avirulence phenotype, indicating that this is a dominant gene triggering R2-dependent disease resistance. PiAVR2 presence/absence polymorphisms and differential transcription explain virulence on R2 plants. Isolates infecting R2 plants express PiAVR2-like, which evades recognition by R2. PiAVR2 and PiAVR2-like differ in 13 amino acids, eight of which are in the C-terminal effector domain; one or more of these determines recognition by R2. Nevertheless, few polymorphisms were observed within each gene in pathogen isolates, suggesting limited selection pressure for change within PiAVR2 and PiAVR2-like. • Our results direct a search for R genes recognizing PiAVR2-like, which, deployed with R2, may exert strong selection pressure against the P. infestans population.


Assuntos
Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Polimorfismo Genético/genética , Proteínas/metabolismo , Solanum tuberosum/fisiologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica , Genes Dominantes/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Phytophthora infestans/genética , Phytophthora infestans/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Estrutura Terciária de Proteína , Proteínas/genética , Solanum/genética , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
16.
Fungal Biol ; 114(9): 702-23, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20943180

RESUMO

Proteins embedded in the cell wall and plasma membrane of filamentous oomycetes and fungi provide a means by which these organisms can interact with their local environment. However, cell wall and membrane proteins have often proved difficult to isolate using conventional proteomic techniques. Here we have used liquid chromatography tandem mass spectrometry (LC-MS/MS) to facilitate rapid and sensitive quantification of the cell wall proteome. We report the use of LC-MS/MS to identify differentially regulated proteins from the cell walls of three different lifecycle stages of the oomycete plant pathogen Phytophthora infestans: non-sporulating vegetative mycelium, sporulating mycelium, and germinating cysts with appressoria. We have also used quantitative real-time RT-PCR to confirm that the transcripts corresponding to some of these proteins, namely those identified in cell walls of germinating cysts with appressoria, accumulate differentially throughout the lifecycle. These proteins may, therefore, be important for pre-infective development and early pathogenicity. Up to 31 covalently and non-covalently bound cell wall-associated proteins were identified. All of the proteins identified in germinating cysts with appressoria, and several of those from mycelial fractions, were classified as putative effector or pathogen-associated molecular pattern (PAMP) molecules, including members of the CBEL family, the elicitin family, the crinkler (CRN) family and two transglutaminases. Thus, the cell wall of P. infestans may represent an important reservoir for surface-presented, apoplastic effectors or defence activation molecules. Proteins predicted to be cell surface proteins included IPI-B like proteins, mucins, cell wall-associated enzymes and annexin family members. Additionally we identified up to 27 membrane-associated proteins from Triton X-114 phase partitioned mycelial membrane preparations, producing the first inventory of oomycete membrane-associated proteins. Four of these proteins are small Rab-type G-proteins and several are associated with secretion.


Assuntos
Parede Celular/química , Proteínas de Membrana/química , Phytophthora infestans/química , Phytophthora infestans/crescimento & desenvolvimento , Proteoma/química , Parede Celular/genética , Parede Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Proteoma/genética , Proteoma/metabolismo , Solanum tuberosum/parasitologia , Espectrometria de Massas em Tandem
17.
Mol Plant Pathol ; 11(2): 227-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20447272

RESUMO

Oomycete plant pathogens cause a wide variety of economically and environmentally important plant diseases. Mandipropamid (MPD) is a carboxylic acid amide (CAA) effective against downy mildews, such as Plasmopara viticola on grapes and potato late blight caused by Phytophthora infestans. Historically, the identification of the mode of action of oomycete-specific control agents has been problematic. Here, we describe how a combination of biochemical and genetic techniques has been utilized to identify the molecular target of MPD in P. infestans. Phytophthora infestans germinating cysts treated with MPD produced swelling symptoms typical of cell wall synthesis inhibitors, and these effects were reversible after washing with H(2)O. Uptake studies with (14)C-labelled MPD showed that this oomycete control agent acts on the cell wall and does not enter the cell. Furthermore, (14)C glucose incorporation into cellulose was perturbed in the presence of MPD which, taken together, suggests that the inhibition of cellulose synthesis is the primary effect of MPD. Laboratory mutants, insensitive to MPD, were raised by ethyl methane sulphonate (EMS) mutagenesis, and gene sequence analysis of cellulose synthase genes in these mutants revealed two point mutations in the PiCesA3 gene, known to be involved in cellulose synthesis. Both mutations in the PiCesA3 gene result in a change to the same amino acid (glycine-1105) in the protein. The transformation and expression of a mutated PiCesA3 allele was carried out in a sensitive wild-type isolate to demonstrate that the mutations in PiCesA3 were responsible for the MPD insensitivity phenotype.


Assuntos
Proteínas de Algas/metabolismo , Amidas/farmacologia , Ácidos Carboxílicos/farmacologia , Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Phytophthora infestans/enzimologia , Plantas/microbiologia , Proteínas de Algas/química , Proteínas de Algas/genética , Sequência de Aminoácidos , Parede Celular/efeitos dos fármacos , Celulose/biossíntese , Cruzamentos Genéticos , Metanossulfonato de Etila , Dosagem de Genes/genética , Glucose/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Dados de Sequência Molecular , Mutagênese/efeitos dos fármacos , Mutação/genética , Phytophthora infestans/citologia , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/genética , Plantas/efeitos dos fármacos , Transformação Genética/efeitos dos fármacos
18.
Nature ; 461(7262): 393-8, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19741609

RESUMO

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


Assuntos
Genoma/genética , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas de Algas/genética , Elementos de DNA Transponíveis/genética , DNA Intergênico/genética , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Humanos , Irlanda , Dados de Sequência Molecular , Necrose , Fenótipo , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Solanum tuberosum/imunologia , Inanição
19.
Microbiology (Reading) ; 154(Pt 12): 3743-3751, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19047742

RESUMO

The oomycete potato late blight pathogen, Phytophthora infestans, and the apicomplexan malaria parasite Plasmodium falciparum translocate effector proteins inside host cells, presumably to the benefit of the pathogen or parasite. Many oomycete candidate secreted effector proteins possess a peptide domain with the core conserved motif, RxLR, located near the N-terminal secretion signal peptide. In the Ph. infestans effector Avr3a, RxLR and an additional EER motif are essential for translocation into host cells during infection. Avr3a is recognized in the host cytoplasm by the R3a resistance protein. We have exploited this cytoplasmic recognition to report on replacement of the RxLR-EER of Avr3a with the equivalent sequences from the intracellular effectors ATR1NdWsB and ATR13 from the related oomycete pathogen, Hyaloperonospora parasitica, and the host targeting signal from the Pl. falciparum virulence protein PfHRPII. Introduction of these chimeric transgenes into Ph. infestans and subsequent virulence testing on potato plants expressing R3a demonstrated the alternative motifs to be functional in translocating Avr3a inside plant cells. These results suggest common mechanisms for protein translocation in both malaria and oomycete pathosystems.


Assuntos
Proteínas de Algas/metabolismo , Motivos de Aminoácidos , Phytophthora/metabolismo , Plasmodium falciparum/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Algas/química , Proteínas de Algas/genética , Sequência de Aminoácidos , Animais , Vetores Genéticos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Oomicetos/genética , Oomicetos/metabolismo , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plasmodium falciparum/genética , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Solanum tuberosum/microbiologia , Transformação Genética , Virulência
20.
Cell Microbiol ; 10(11): 2271-84, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18637942

RESUMO

Phytophthora infestans causes late-blight, a devastating and re-emerging disease of potato crops. During the early stages of infection, P. infestans differentiates infection-specific structures such as appressoria for host epidermal cell penetration, followed by infection vesicles, and haustoria to establish a biotrophic phase of interaction. Here we report the cloning, from a suppression subtractive hybridization library, of a P. infestans gene called Pihmp1 encoding a putative glycosylated protein with four closely spaced trans-membrane helices. Pihmp1 expression is upregulated in germinating cysts and in germinating cysts with appressoria, and significantly upregulated throughout infection of potato. Transient gene silencing of Pihmp1 led to loss of pathogenicity and indicated involvement of this gene in the penetration and early infection processes of P. infestans. P. infestans transformants expressing a Pihmp1::monomeric red fluorescent protein (mRFP) fusion demonstrated that Pihmp1 was translated in germinating sporangia, germinating cysts and appressoria, accumulated in the appressorium, and was located at the haustorial membrane during infection. Furthermore, we discovered that haustorial structures are formed over a 3 h period, maturing for up to 12 h, and that their formation is initiated only at sites on the surface of intercellular hyphae where Pihmp1::mRFP is localized. We propose that Pihmp1 is an integral membrane protein that provides physical stability to the plasma membrane of P. infestans infection structures. We have provided the first evidence that the surface of oomycete haustoria possess proteins specific to these biotrophic structures, and that formation of biotrophic structures (infection vesicles and haustoria) is essential to successful host colonization by P. infestans.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Membrana/metabolismo , Phytophthora infestans/citologia , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas de Algas/genética , Sequência de Aminoácidos , Inativação Gênica , Proteínas de Membrana/genética , Dados de Sequência Molecular , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Folhas de Planta/microbiologia , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Solanum tuberosum/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...