Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(1): 666-672, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356332

RESUMO

Mastering the magnetic response of molecular spin interfaces by tuning the occupancy of the molecular orbitals, which carry the spin magnetic moment, can be accomplished by electron doping. We propose a viable route to control the magnetization direction and magnitude of a molecular spin network, in a graphene-mediated architecture, achieved via alkali doping of manganese phthalocyanine (MnPc) molecules assembled on cobalt intercalated under a graphene membrane. The antiparallel magnetic alignment of the MnPc molecules with the underlying Co layer can be switched to a ferromagnetic state by electron doping. Multiplet calculations unveil an enhanced magnetic state of the Mn centers with a 3/2 to 5/2 spin transition induced by alkali doping, as confirmed by the steepening of the hysteresis loops, with higher saturation magnetization values. This new molecular spin configuration can be aligned by an external field, almost independently from the hard-magnet substrate effectively behaving as a free magnetic layer.

2.
J Chem Phys ; 153(21): 214703, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291906

RESUMO

The dispersion of the electronic states of epitaxial graphene (Gr) depends significantly on the strength of the bonding with the underlying substrate. We report on empty electron states in cobalt-intercalated Gr grown on Ir(111), studied by angle-resolved inverse photoemission spectroscopy and x-ray absorption spectroscopy, complemented with density functional theory calculations. The weakly bonded Gr on Ir preserves the peculiar spectroscopic features of the Gr band structure, and the empty spectral densities are almost unperturbed. Upon intercalation of a Co layer, the electronic response of the interface changes, with an intermixing of the Gr π* bands and Co d states, which breaks the symmetry of π/σ states, and a downshift of the upper part of the Gr Dirac cone. Similarly, the image potential of Ir(111) is unaltered by the Gr layer, while a downward shift is induced upon Co intercalation, as unveiled by the image state energy dispersion mapped in a large region of the surface Brillouin zone.

3.
J Chem Phys ; 150(5): 054704, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736689

RESUMO

The assembling of metal phthalocyanines on the rippled moiré superlattice of graphene/Ir(111) intercalated with one Co layer is driven by the site-dependent polarization field induced by the incommensurate graphene-Co interface. We have performed an X-ray absorption and photoemission study to unveil the role of the metallic centers and of the organic ligands in the molecule-Co interaction process mediated by graphene. Notably, we consider different electronic molecular orbitals, i.e. phthalocyanines with Cu and Mn metallic ions. The spectroscopic response suggests almost unaltered CuPc molecular states upon adsorption, and the rippled graphene carpet decouples completely the electronic interaction between the molecules and the Co layer, while a slight hybridization is present for MnPcs. MnPc molecules, trapped in the valleys of the moiré graphene superlattice, slightly intermix, through the orbitals protruding out of the molecular plane, with the underlying Co, while the organic ligands are almost unaltered. Graphene acts as an interlayer and mediates the interaction between metal phthalocyanines and the metallic substrate, preventing a strong chemical intermixing and enabling the assembly of almost unaltered molecules, preserving their electronic/magnetic state.

4.
Nano Lett ; 18(4): 2268-2273, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29558616

RESUMO

We report an advanced organic spin-interface architecture with magnetic remanence at room temperature, constituted by metal phthalocyanine molecules magnetically coupled with Co layer(s), mediated by graphene. Fe- and Cu-phthalocyanines assembled on graphene/Co have identical structural configurations, but FePc couples antiferromagnetically with Co up to room temperature, while CuPc couples ferromagnetically with weaker coupling and thermal stability, as deduced by element-selective X-ray magnetic circular dichroic signals. The robust antiferromagnetic coupling is stabilized by a superexchange interaction, driven by the out-of-plane molecular orbitals responsible of the magnetic ground state and electronically decoupled from the underlying metal via the graphene layer, as confirmed by ab initio theoretical predictions. These archetypal spin interfaces can be prototypes to demonstrate how antiferromagnetic and/or ferromagnetic coupling can be optimized by selecting the molecular orbital symmetry.

5.
J Chem Phys ; 147(13): 134702, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987123

RESUMO

Manganese-phthalocyanines form assembled chains with a variety of ordered super-structures, flat lying along the Au(110) reconstructed channels. The chains first give rise to a ×5 symmetry reconstruction, while further deposition of MnPc leads to a ×7 periodicity at the completion of the first single layer. A net polarization with the formation of an interface dipole is mainly due to the molecular π-states located on the macrocycles pyrrole rings, while the central metal ion induces a reduction in the polarization, whose amount is related to the Mn-Au interaction. The adsorption-induced interface polarization is compared to other 3d-metal phthalocyanines, to unravel the role of the central metal atom configuration in the interaction process of the d-states. The MnPc adsorption on Au(110) induces the re-hybridization of the electronic states localized on the central metal atom, promoting a charge redistribution of the molecular orbitals of the MnPc molecules. The molecule-substrate interaction is controlled by a symmetry-determined mixing between the electronic states, involving also the molecular empty orbitals with d character hybridized with the nitrogen atoms of the pyrrole ring, as deduced by photoemission and X-ray absorption spectroscopy exploiting light polarization. The symmetry-determined mixing between the electronic states of the Mn metal center and of the Au substrate induces a density of states close to the Fermi level for the ×5 phase.

6.
ACS Omega ; 2(7): 3691-3697, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457683

RESUMO

Scaling graphene from a two-dimensional (2D) ideal structure to a three-dimensional (3D) millimeter-sized architecture without compromising its remarkable electrical, optical, and thermal properties is currently a great challenge to overcome the limitations of integrating single graphene flakes into 3D devices. Herewith, highly connected and continuous nanoporous graphene (NPG) samples, with electronic and vibrational properties very similar to those of suspended graphene layers, are presented. We pinpoint the hallmarks of 2D ideal graphene scaled in these 3D porous architectures by combining the state-of-the-art spectromicroscopy and imaging techniques. The connected and bicontinuous topology, without frayed borders and edges and with low density of crystalline defects, has been unveiled via helium ion, Raman, and transmission electron microscopies down to the atomic scale. Most importantly, nanoscanning photoemission unravels a 3D NPG structure with preserved 2D electronic density of states (Dirac cone like) throughout the porous sample. Furthermore, the high spatial resolution brings to light the interrelationship between the topology and the morphology in the wrinkled and highly bent regions, where distorted sp2 C bonds, associated with sp3-like hybridization state, induce small energy gaps. This highly connected graphene structure with a 3D skeleton overcomes the limitations of small-sized individual graphene sheets and opens a new route for a plethora of applications of the 2D graphene properties in 3D devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...