Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16644, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789072

RESUMO

Liposomes are the most successful nanoparticles used to date to load and deliver chemotherapeutic agents to cancer cells. They are nano-sized vesicles made up of phospholipids, and targeting moieties can be added to their surfaces for the active targeting of specific tumors. Furthermore, Ultrasound can be used to trigger the release of the loaded drugs by disturbing their phospholipid bilayer structure. In this study, we have prepared pegylated liposomes using four types of phospholipids with similar saturated hydrocarbon tails including a phospholipid with no head group attached to the phosphate head (DPPA) and three other phospholipids with different head groups attached to their phosphate heads (DPPC, DPPE and DPPG). The prepared liposomes were conjugated to the monoclonal antibody trastuzumab (TRA) to target the human epidermal growth factor receptor 2 (HER2) overexpressed on HER2-positive cancer cells (HER2+). We have compared the response of the different formulations of liposomes when triggered with low-frequency ultrasound (LFUS) and their cellular uptake by the cancer cells. The results showed that the different formulations had similar size, polydispersity, and stability. TRA-conjugated DPPC liposomes showed the highest sensitivity to LFUS. On the other hand, incubating the cancer cells with TRA-conjugated DPPA liposomes triggered with LFUS showed the highest uptake of the loaded calcein by the HER2+ cells.


Assuntos
Lipossomos , Fosfolipídeos , Humanos , Lipossomos/química , Liberação Controlada de Fármacos , Trastuzumab/farmacologia , Fosfatos , Sistemas de Liberação de Medicamentos
2.
Artif Cells Nanomed Biotechnol ; 50(1): 111-120, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35543613

RESUMO

Targeted liposomes enable the delivery of encapsulated chemotherapeutics to tumours by targeting specific receptors overexpressed on the surfaces of cancer cells; this helps in reducing the systemic side effects associated with the cytotoxic agents. Upon reaching the targeted site, these liposomes can be triggered to release their payloads using internal or external triggers. In this study, we investigate the use of low-frequency ultrasound as an external modality to trigger the release of a model drug (calcein) from non-targeted and targeted pegylated liposomes modified with cyclic arginine-glycine-aspartate (cRGD). Liposomes were exposed to sonication at 20-kHz using three different power densities (6.2, 9, and 10 mW/cm2). Our results showed that increasing the power density increased calcein release from the sonicated liposomes. Moreover, cRGD conjugation to the surface of the liposomes rendered cRGD-liposomes more susceptible to ultrasound compared to the non-targeted liposomes. cRGD conjugation was also found to increase cellular uptake of calcein by human colorectal carcinoma (HCT116) cells which were further enhanced following sonicating the cells with low-frequency ultrasound (LFUS).


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Sistemas de Liberação de Medicamentos/métodos , Células HCT116 , Humanos , Sonicação
3.
Polymers (Basel) ; 14(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406160

RESUMO

Chemotherapeutic drugs are highly effective in treating cancer. However, the side effects associated with this treatment lower the quality of life of cancer patients. Smart nanocarriers are able to encapsulate these drugs to deliver them to tumors while reducing their contact with the healthy cells and the subsequent side effects. Upon reaching their target, the release of the encapsulated drugs should be carefully controlled to achieve therapeutic levels at the required time. Light is one of the promising triggering mechanisms used as external stimuli to trigger drug release from the light-responsive nanocarriers. Photo-induced drug release can be achieved at a wide range of wavelengths: UV, visible, and NIR depending on many factors. In this review, photo-induced release mechanisms were summarized, focusing on liposomes and micelles. In general, light-triggering mechanisms are based on one of the following: changing the hydrophobicity of a nanocarrier constituent(s) to make it more soluble, introducing local defects within a nanocarrier (by conformational transformation or photo-cleavage of its lipids/polymers chains) to make it more porous or concentrating heat for thermo-sensitive nanocarriers to release their payload. Several research studies were also presented to explore the potentials and limitations of this promising drug release triggering mechanism.

4.
Polymers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267747

RESUMO

Temperature excursions within a biological milieu can be effectively used to induce drug release from thermosensitive drug-encapsulating nanoparticles. Oncological hyperthermia is of particular interest, as it is proven to synergistically act to arrest tumor growth when combined with optimally-designed smart drug delivery systems (DDSs). Thermoresponsive DDSs aid in making the drugs more bioavailable, enhance the therapeutic index and pharmacokinetic trends, and provide the spatial placement and temporal delivery of the drug into localized anatomical sites. This paper reviews the fundamentals of thermosensitive polymers, with a particular focus on thermoresponsive liposomal-based drug delivery systems.

5.
Polymers (Basel) ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267759

RESUMO

A number of promising nano-sized particles (nanoparticles) have been developed to conquer the limitations of conventional chemotherapy. One of the most promising methods is stimuli-responsive nanoparticles because they enable the safe delivery of the drugs while controlling their release at the tumor sites. Different intrinsic and extrinsic stimuli can be used to trigger drug release such as temperature, redox, ultrasound, magnetic field, and pH. The intracellular pH of solid tumors is maintained below the extracellular pH. Thus, pH-sensitive nanoparticles are highly efficient in delivering drugs to tumors compared to conventional nanoparticles. This review provides a survey of the different strategies used to develop pH-sensitive nanoparticles used in cancer therapy.

6.
Pharmaceutics ; 14(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35213987

RESUMO

Doxorubicin (DOX) is one of the most widely used anthracycline anticancer drugs due to its high efficacy and evident antitumoral activity on several cancer types. However, its effective utilization is hindered by the adverse side effects associated with its administration, the detriment to the patients' quality of life, and general toxicity to healthy fast-dividing cells. Thus, delivering DOX to the tumor site encapsulated inside nanocarrier-based systems is an area of research that has garnered colossal interest in targeted medicine. Nanoparticles can be used as vehicles for the localized delivery and release of DOX, decreasing the effects on neighboring healthy cells and providing more control over the drug's release and distribution. This review presents an overview of DOX-based nanocarrier delivery systems, covering loading methods, release rate, and the cytotoxicity of liposomal, micellar, and metal organic frameworks (MOFs) platforms.

7.
Pharmaceutics ; 13(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959354

RESUMO

Quantum dots (QDs) are a promising tool to detect and monitor tumors. However, their small size allows them to accumulate in large quantities inside the healthy cells (in addition to the tumor cells), which increases their toxicity. In this study, we synthesized stealth liposomes encapsulating hydrophilic graphene quantum dots and triggered their release with ultrasound with the goal of developing a safer and well-controlled modality to deliver fluorescent markers to tumors. Our results confirmed the successful encapsulation of the QDs inside the core of the liposomes and showed no effect on the size or stability of the prepared liposomes. Our results also showed that low-frequency ultrasound is an effective method to release QDs encapsulated inside the liposomes in a spatially and temporally controlled manner to ensure the effective delivery of QDs to tumors while reducing their systemic toxicity.

8.
IEEE Trans Nanobioscience ; 20(4): 565-576, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270430

RESUMO

Nanocarriers, such as liposomes and micelles, were developed to enhance the delivery of therapeutic drugs to malignant tissues. Internal or external stimuli can be applied to achieve spatiotemporal controlled release from these carriers. This will result in enhancing their therapeutic efficacy while reducing toxicity. Mathematical modeling is used to simulate drug release from nanocarriers; this will facilitate and optimize the development and design of desirable nanocarriers in a systematic manner, rather than a trial-and-error approach. This review summarizes nine mathematical models often used to simulate drug release from nanocarriers and reviews studies which employed these models to simulate drug release from conventional as well as temperature-, pH-, and ultrasound-triggered micelles and liposomes.


Assuntos
Antineoplásicos , Micelas , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Cinética , Lipossomos
9.
Sci Rep ; 11(1): 11589, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078930

RESUMO

Targeted liposomes are designed to target specific receptors overexpressed on the surfaces of cancer cells. This technique ensures site-specific drug delivery to reduce undesirable side effects while enhancing the efficiency of the encapsulated therapeutics. Upon reaching the tumor site, these liposomes can be triggered to release their content in a controlled manner using ultrasound (US). In this study, drug release from pegylated calcein-loaded liposomes modified with transferrin (Tf) and triggered with US was evaluated. Low-frequency ultrasound at 20-kHz using three different power densities (6.2 mW/cm2, 9 mW/cm2 and 10 mW/cm2) was found to increase calcein release. In addition, transferrin-conjugated pegylated liposomes (Tf-PEG liposomes) were found to be more sonosensitive compared to the non-targeted (control) liposomes. Calcein uptake by HeLa cells was found to be significantly higher with the Tf-PEG liposomes compared to the non-targeted control liposomes. This uptake was further enhanced following the exposure to low-frequency ultrasound (at 35 kHz). These findings show that targeted liposomes triggered with US have promising potential as a safe and effective drug delivery platform.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos , Sonicação , Transferrina/química , Células HeLa , Humanos , Tamanho da Partícula
10.
ACS Pharmacol Transl Sci ; 4(2): 589-612, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860189

RESUMO

The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles designed for the selectivity of anticancer drugs and gene transport to tumors. They are small enough to extravasate into solid tumors, where they slowly release their therapeutic load by passive leakage or biodegradation. Using smart nanocarriers, the rate of release of the entrapped therapeutic(s) can be increased, and greater exposure of the tumor cells to the therapeutics can be achieved when the nanocarriers are exposed to certain internally (enzymes, pH, and temperature) or externally (light, magnetic field, and ultrasound) applied stimuli that trigger the release of their load in a safe and controlled manner, spatially and temporally. This review gives a comprehensive overview of recent research findings on the different types of stimuli-responsive nanocarriers and their application in cancer treatment with a particular focus on ultrasound.

11.
Sci Rep ; 11(1): 7545, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824356

RESUMO

The functionalization of liposomes with monoclonal antibodies is a potential strategy to increase the specificity of liposomes and reduce the side-effects associated with chemotherapeutic agents. The active targeting of the Human Epidermal growth factor Receptor 2 (HER2), which is overexpressed in HER2 positive breast cancer cells, can be achieved by coating liposomes with an anti-HER2 monoclonal antibody. In this study, we synthesized calcein and Doxorubicin-loaded immunoliposomes functionalized with the monoclonal antibody Trastuzumab (TRA). Both liposomes were characterized for their size, phospholipid content and antibody conjugation. Exposing the liposomes to low-frequency ultrasound (LFUS) triggered drug release which increased with the increase in power density. Trastuzumab conjugation resulted in enhancing the sensitivity of the liposomes to LFUS. Compared to the control liposomes, TRA-liposomes showed higher cellular toxicity and higher drug uptake by the HER2 + cell line (SKBR3) which was further improved following sonication with LFUS. Combining immunoliposomes with LFUS is a promising technique in the field of targeted drug delivery that can enhance efficiency and reduce the cytotoxicity of antineoplastic drugs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos/uso terapêutico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Fluoresceínas/administração & dosagem , Fluoresceínas/uso terapêutico , Humanos , Imunoconjugados/metabolismo , Receptor ErbB-2/imunologia , Trastuzumab/administração & dosagem , Trastuzumab/uso terapêutico , Terapia por Ultrassom/métodos
12.
J Biomed Nanotechnol ; 17(1): 90-99, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653499

RESUMO

The successful targeting of tumors can be achieved by conjugating targeting moieties to nanoparticles. These modifications allow nannocarriers to achieve greater targeting specificity through binding to specific receptors overexpressed on the surface of the tumor cells. In this study, pegylated liposomes encapsulating the model drug/dye calcein and conjugated to hyaluronic acid (HA) molecules were successfully synthesized, and their ability to target HA receptors overexpressed on a breast cancer cell line was investigated in vitro. Low-frequency ultrasound (LFUS), applied at three different power densities (6.2, 9, and 10 mW/cm²) were used to trigger the release of the entrapped calcein. Both the control and HAconjugated liposomes showed similar release profiles. HA conjugation to the liposomes resulted in a significant increase in calcein uptake by the breast cancer cell line MDA-MB-231 known for its CD44 (HA receptor) overexpression, while such an effect was not recorded with NIH-3T3, an embryonic mouse fibroblast, with low levels of CD44 expression. The application of low LFUS showed a significant enhancement of calcein uptake by MDA-MB-231 cells from our liposome compared to calcein uptake without cell exposure to ultrasound. These findings suggest that combining HA-conjugated liposomes with ultrasound is a promising drug delivery platform in breast cancer treatment.


Assuntos
Neoplasias da Mama , Lipossomos , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Ácido Hialurônico , Células MCF-7 , Camundongos
13.
Curr Protein Pept Sci ; 22(6): 493-504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33583369

RESUMO

Over the past few decades, immunotherapy has emerged as a promising therapeutic approach to treat some types of cancer. Moreover, antibody-based cancer therapies can trigger apoptosis and cell growth inhibition to induce immune cell destruction of target cells through antibody-dependent cellular cytotoxicity (ADCC). Nevertheless, immunotherapeutic efficiency is often restricted due to deficient delivery or low accumulation of therapeutic molecules at the tumor site. The development of pegylated liposomes with monoclonal antibodies conjugated to their surfaces (immunoliposomes) and triggered with ultrasound can effectively improve drug accessibility by enhancing cell membrane permeability and drug release. This review summarizes existing traditional cancer treatments and their limitations, emphasizing the recent advancements in ultrasound-triggered immunotherapy.


Assuntos
Lipossomos , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Imunoterapia , Neoplasias/terapia
14.
Plant Physiol Biochem ; 149: 256-265, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32087537

RESUMO

Chemical stimulants, used to enhance biomass yield, are highly desirable for the commercialisation of algal products for a wide range of applications in the food, pharma and biofuels sectors. In the present study, phenolic compounds, varying in substituents and positional isomers on the arene ring have been evaluated to determine structure-activity relationship and growth. The phenols, catechol, 4-methylcatechol and 2, 4-dimethyl phenol were generally inhibitory to growth as were the compounds containing an aldehyde function. By contrast, the phenolic acids, salicylic acid, aspirin and 4-hydroxybenzoate markedly stimulated cell proliferation enhancing cell numbers by 20-45% at mid-log phase. The order of growth stimulation was ortho > para > meta with respect to the position of the OH group. Both SA and aspirin reduced 16:3 in chloroplast galactolipids. In addition, both compounds inhibited lipoxygenase activity and lowered the levels of lipid hydroperoxides and malondialdehydes in the cells. The present study has demonstrated the possibility of using SA or aspirin to promote algal growth through the manipulation of lipid metabolising enzymes.


Assuntos
Aspirina , Chlamydomonas , Ácido Salicílico , Aspirina/farmacologia , Chlamydomonas/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Dessaturases/metabolismo , Lipoxigenase/metabolismo , Ácido Salicílico/farmacologia
15.
ACS Biomater Sci Eng ; 6(1): 48-57, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463192

RESUMO

The use of targeted liposomes encapsulating chemotherapy drugs enhances the specific targeting of cancer cells, thus reducing the side effects of these drugs and providing patient-friendly chemotherapy treatment. Targeted pegylated (stealth) liposomes have the ability to safely deliver their loaded drugs to the cancer cells by targeting specific receptors overly expressed on the surface of these cells. Applying ultrasound as an external stimulus will safely trigger drug release from these liposomes in a controlled manner. In this study, we investigated the release kinetics of the model drug "calcein" from targeted liposomes sonicated with low-frequency ultrasound (20 kHz). Our results showed that pegylated liposomes were more sonosensitive compared to nonpegylated liposomes. A comparison of the effect of three targeting moieties conjugated to the surface of pegylated liposomes, namely human serum albumin (HSA), transferrin (Tf) and arginylglycylaspartic acid (RGD), on calcein release kinetics was conducted. The fluorescent results showed that HSA-PEG and Tf-PEG liposomes were more sonosensitive (showing higher calcein release following the exposure to pulsed LFUS) compared to the control pegylated liposomes, thus adding more acoustic benefits to their targeting efficacy.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Liberação Controlada de Fármacos , Humanos , Albumina Sérica Humana , Transferrina
16.
Artif Cells Nanomed Biotechnol ; 47(1): 705-714, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30873869

RESUMO

Targeted liposomes have high potentials in the specific and effective delivery of their loaded therapeutic agents to the tumour site. Once at the tumour site, it is important that these liposomes are triggered to release their load in a controlled and effective manner. In this study, pegylated (stealth) liposomes conjugated to human serum albumin (HSA) were investigated for the delivery of a model drug (calcein) to breast cancer cells. The fluorescent results showed that calcein uptake by the two breast cancer cell lines (MDA-MB-231 and MCF-7) was significantly higher with the HSA-PEG liposomes compared to the non-targeted control liposomes. Furthermore, the exposure to low-frequency ultrasound (LFUS) resulted in a statistically significant uptake of calcein compared to the uptake without ultrasound. The described drug delivery (DD) system, which involves combining the targeted liposomal formulation with ultrasonic triggering techniques, promises a safe, effective and site-specific breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Albumina Sérica Humana/química , Ondas Ultrassônicas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Fluoresceínas/química , Fluoresceínas/farmacocinética , Humanos , Polietilenoglicóis/química
17.
Curr Top Med Chem ; 18(10): 857-880, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29886831

RESUMO

Conventional chemotherapeutics lack the specificity and controllability, thus may poison healthy cells while attempting to kill cancerous ones. Newly developed nano-drug delivery systems have shown promise in delivering anti-tumor agents with enhanced stability, durability and overall performance; especially when used along with targeting and triggering techniques. This work traces back the history of chemotherapy, addressing the main challenges that have encouraged the medical researchers to seek a sanctuary in nanotechnological-based drug delivery systems that are grafted with appropriate targeting techniques and drug release mechanisms. A special focus will be directed to acoustically triggered liposomes encapsulating doxorubicin.


Assuntos
Acústica , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Neoplasias/tratamento farmacológico , Antibióticos Antineoplásicos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Lipossomos/química , Nanotecnologia
18.
Plant Physiol Biochem ; 123: 125-131, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29232652

RESUMO

The extensive genetic resources of Chlamydomonas has led to its widespread use as a model system for understanding fundamental processes in plant cells, including rates of cell division potentially modulated through polyamines. Putrescine was the major polyamine in both free (88%) and membrane-bound fractions (93%) while norspermidine was the next most abundant in these fractions accounting for 11% and 6%, respectively. Low levels of diaminopropane, spermidine and spermine were also observed although no cadaverine or norspermine were detected. Ornithine decarboxylase (ODC, EC 4.1.1.17) activity was almost five times higher than arginine decarboxylase (ADC, EC 4.1.1.19) and is the major route of putrescine synthesis. The fluoride analogue of ornithine (α-DFMO) inhibited membrane associated ODC activity whilst simultaneously stimulating cell division in a dose dependent manner. Following exposure to α-DFMO the putrescine content in the cells declined while the norspermidine content increased over two fold. Addition of norspermidine to cultures stimulated cell division mimicking the effects observed using DFMO and also reversed the inhibitory effects of cyclohexylamine on growth. The results reveal that ODC is the major route to polyamine formation in the Chlamydomonas CC-406 cell-wall mutant, in contrast to the preferential ADC route reported for Chlorella vulgaris, suggesting that significant species differences exist in biosynthetic pathways which modulate endogenous polyamine levels in green algae.


Assuntos
Divisão Celular/fisiologia , Chlamydomonas reinhardtii/enzimologia , Ornitina Descarboxilase/metabolismo , Proteínas de Plantas/metabolismo , Putrescina/biossíntese , Chlamydomonas reinhardtii/genética , Mutação , Ornitina Descarboxilase/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...