Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 6(4)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347855

RESUMO

To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.

2.
J Biochem ; 158(6): 513-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26112661

RESUMO

Dihydrouridine (D) is formed by tRNA dihydrouridine synthases (Dus). In mesophiles, multiple Dus enzymes bring about D modifications at several positions in tRNA. The extreme-thermophilic eubacterium Thermus thermophilus, in contrast, has only one dus gene in its genome and only two D modifications (D20 and D20a) in tRNA have been identified. Until now, an in vitro assay system for eubacterial Dus has not been reported. In this study, therefore, we constructed an in vitro assay system using purified Dus. Recombinant T. thermophilus Dus lacking bound tRNA was successfully purified. The in vitro assay revealed that no other factors in living cells were required for D formation. A dus gene disruptant (Δdus) strain of T. thermophilus verified that the two D20 and D20a modifications in tRNA were derived from one Dus protein. The Δdus strain did not show growth retardation at any temperature. The assay system showed that Dus modified tRNA(Phe) transcript at 60°C, demonstrating that other modifications in tRNA are not essential for Dus activity. However, a comparison of the formation of D in native tRNA(Phe) purified from the Δdus strain and tRNA(Phe) transcript revealed that other tRNA modifications are required for D formation at high temperatures.


Assuntos
Proteínas de Bactérias/química , Oxirredutases/química , RNA de Transferência/química , Thermus thermophilus/enzimologia , Uridina/análogos & derivados , Proteínas de Bactérias/isolamento & purificação , Ensaios Enzimáticos , Oxirredução , Oxirredutases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Temperatura , Uridina/biossíntese
3.
Biochem Biophys Rep ; 3: 140-143, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29124177

RESUMO

A significant challenge in the field of in vitro synthetic biology is the construction of a self-reproducing cell-free translation system, which reproduces its components, such as translation proteins, through translation and transcription by itself. As a first step for such construction, in this study we expressed and evaluated the activity of 20 aminoacyl-tRNA synthetases (aaRSs), a major component of a translation system, in a reconstituted translation system (PURE system). We found that 19 aaRS with the exception of phenylalanyl-tRNA synthetase (PheRS) are expressed as soluble proteins and their activities are comparable to those expressed in Escherichia coli . This study provides basic information on the properties of aaRSs expressed in the PURE system, which will be helpful for the future reconstitution of a self-reproducing translation system.

4.
J Biol Chem ; 286(40): 35236-46, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21844194

RESUMO

Archaeal and eukaryotic tRNA (N(2),N(2)-guanine)-dimethyltransferase (Trm1) produces N(2),N(2)-dimethylguanine at position 26 in tRNA. In contrast, Trm1 from Aquifex aeolicus, a hyper-thermophilic eubacterium, modifies G27 as well as G26. Here, a gel mobility shift assay revealed that the T-arm in tRNA is the binding site of A. aeolicus Trm1. To address the multisite specificity, we performed an x-ray crystal structure study. The overall structure of A. aeolicus Trm1 is similar to that of archaeal Trm1, although there is a zinc-cysteine cluster in the C-terminal domain of A. aeolicus Trm1. The N-terminal domain is a typical catalytic domain of S-adenosyl-l-methionine-dependent methyltransferases. On the basis of the crystal structure and amino acid sequence alignment, we prepared 30 mutant Trm1 proteins. These mutant proteins clarified residues important for S-adenosyl-l-methionine binding and enabled us to propose a hypothetical reaction mechanism. Furthermore, the tRNA-binding site was also elucidated by methyl transfer assay and gel mobility shift assay. The electrostatic potential surface models of A. aeolicus and archaeal Trm1 proteins demonstrated that the distribution of positive charges differs between the two proteins. We constructed a tRNA-docking model, in which the T-arm structure was placed onto the large area of positive charge, which is the expected tRNA-binding site, of A. aeolicus Trm1. In this model, the target G26 base can be placed near the catalytic pocket; however, the nucleotide at position 27 gains closer access to the pocket. Thus, this docking model introduces a rational explanation of the multisite specificity of A. aeolicus Trm1.


Assuntos
Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA de Transferência/metabolismo , tRNA Metiltransferases/química , Alanina , Sítios de Ligação , Cristalografia por Raios X/métodos , Ligação de Hidrogênio , Cinética , Metilação , Modelos Químicos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , RNA de Transferência/química , Proteínas Recombinantes/química , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/fisiologia
5.
J Biol Chem ; 284(31): 20467-78, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19491098

RESUMO

Transfer RNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes N2,N2-dimethylguanine formation at position 26 (m(2)(2)G26) in tRNA. In the reaction, N2-guanine at position 26 (m(2)G26) is generated as an intermediate. The trm1 genes are found only in archaea and eukaryotes, although it has been reported that Aquifex aeolicus, a hyper-thermophilic eubacterium, has a putative trm1 gene. To confirm whether A. aeolicus Trm1 has tRNA methyltransferase activity, we purified recombinant Trm1 protein. In vitro methyl transfer assay revealed that the protein has a strong tRNA methyltransferase activity. We confirmed that this gene product is expressed in living A. aeolicus cells and that the enzymatic activity exists in cell extract. By preparing 22 tRNA transcripts and testing their methyl group acceptance activities, it was demonstrated that this Trm1 protein has a novel tRNA specificity. Mass spectrometry analysis revealed that it catalyzes methyl transfers not only to G26 but also to G27 in substrate tRNA. Furthermore, it was confirmed that native tRNA(Cys) has an m(2)(2)G26m(2)G27 or m(2)(2)G26m(2)(2)G27 sequence, demonstrating that these modifications occur in living cells. Kinetic studies reveal that the m2G26 formation is faster than the m(2)G27 formation and that disruption of the G27-C43 base pair accelerates velocity of the G27 modification. Moreover, we prepared an additional 22 mutant tRNA transcripts and clarified that the recognition sites exist in the T-arm structure. This long distance recognition results in multisite recognition by the enzyme.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Biocatálise , Guanina/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Bactérias/citologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Cinética , Espectrometria de Massas , Metilação , Viabilidade Microbiana , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , tRNA Metiltransferases/química , tRNA Metiltransferases/genética , tRNA Metiltransferases/isolamento & purificação
6.
Genes Cells ; 13(8): 807-16, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18651851

RESUMO

Recombinant Aquifex aeolicus TrmD protein has a Cys20-Cys20 disulfide bond between its two subunits. This was demonstrated by SDS-polyacrylamide gel analysis of wild-type enzyme and C20S mutant protein (in which the Cys20 residue is substituted by serine), in the absence or presence of various concentrations of dithiothreitol. Analytical gel-filtration chromatography revealed that the C20S mutant protein forms a dimer structure even though it is missing the disulfide bond. Western blotting analysis suggests that the Cys20-Cys20 disulfide bond is formed in native TrmD protein in living A. aeolicus cells. Incubation at 85 degrees C for 20 min caused the precipitation of more than half of the C20S protein, while more than 70% of the wild-type enzyme was soluble at that temperature. This assay clearly demonstrates that the disulfide bond enhances the protein stability at 85 degrees C. A kinetic assay showed that the methyl-transfer activity of the C20S mutant protein was slightly less than that of the wild-type enzyme at 70 degrees C. Comparison of the CD-spectra of wild-type and C20S proteins reveals that some of the alpha-helices in the C20S mutant protein are less tightly packed than those of the wild-type enzyme at 70 degrees C.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , tRNA Metiltransferases/química , Sequência de Aminoácidos , Dicroísmo Circular , Cisteína/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Alinhamento de Sequência
7.
Nucleic Acids Symp Ser (Oxf) ; (49): 303-4, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17150754

RESUMO

Aquifex aeolicus is a hyper-thermophilic eubacterium, which probably diverged at the earliest period from the other bacteria on the evolution of life. Therefore, analyses of RNA modification enzymes of this bacterium may supply important information in relation to the establishment of the early protein synthesis. In the previous meeting, we have reported that Aquifex aeolicus trm1 gene product possesses a tRNA (m2(2)G26) methyltransferase activity. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. In this meeting, we report the A. aeolicus Trm1 large scale expression system in E. coli and the substrate RNA recognition mechanism of the enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Guanina/química , RNA de Transferência/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...