Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2023: 6090282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860419

RESUMO

Per-user pricing is possible with cloud computing, a relatively new technology. It provides remote testing and commissioning services through the web, and it utilizes virtualization to make available computing resources. In order to host and store firm data, cloud computing relies on data centers. Data centers are made up of networked computers, cables, power supplies, and other components. Cloud data centers have always had to prioritise high performance over energy efficiency. The biggest obstacle is finding a happy medium between system performance and energy consumption, namely, lowering energy use without compromising system performance or service quality. These results were obtained using the PlanetLab dataset. In order to implement the strategy we recommend, it is crucial to get a complete picture of how energy is being consumed in the cloud. Using proper optimization criteria and guided by energy consumption models, this article offers the Capsule Significance Level of Energy Consumption (CSLEC) pattern, which demonstrates how to conserve more energy in cloud data centers. Capsule optimization's prediction phase F1-score of 96.7 percent and 97 percent data accuracy allow for more precise projections of future value.


Assuntos
Algoritmos , Computação em Nuvem , Confiabilidade dos Dados , Fontes de Energia Elétrica , Felicidade
2.
Comput Intell Neurosci ; 2022: 9414567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720905

RESUMO

COVID-19 has remained a threat to world life despite a recent reduction in cases. There is still a possibility that the virus will evolve and become more contagious. If such a situation occurs, the resulting calamity will be worse than in the past if we act irresponsibly. COVID-19 must be widely screened and recognized early to avert a global epidemic. Positive individuals should be quarantined immediately, as this is the only effective way to prevent a global tragedy that has occurred previously. No positive case should go unrecognized. However, current COVID-19 detection procedures require a significant amount of time during human examination based on genetic and imaging techniques. Apart from RT-PCR and antigen-based tests, CXR and CT imaging techniques aid in the rapid and cost-effective identification of COVID. However, discriminating between diseased and normal X-rays is a time-consuming and challenging task requiring an expert's skill. In such a case, the only solution was an automatic diagnosis strategy for identifying COVID-19 instances from chest X-ray images. This article utilized a deep convolutional neural network, ResNet, which has been demonstrated to be the most effective for image classification. The present model is trained using pretrained ResNet on ImageNet weights. The versions of ResNet34, ResNet50, and ResNet101 were implemented and validated against the dataset. With a more extensive network, the accuracy appeared to improve. Nonetheless, our objective was to balance accuracy and training time on a larger dataset. By comparing the prediction outcomes of the three models, we concluded that ResNet34 is a more likely candidate for COVID-19 detection from chest X-rays. The highest accuracy level reached 98.34%, which was higher than the accuracy achieved by other state-of-the-art approaches examined in earlier studies. Subsequent analysis indicated that the incorrect predictions occurred with approximately 100% certainty. This uncovered a severe weakness in CNN, particularly in the medical area, where critical decisions are made. However, this can be addressed further in a future study by developing a modified model to incorporate uncertainty into the predictions, allowing medical personnel to manually review the incorrect predictions.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Redes Neurais de Computação , SARS-CoV-2 , Raios X
3.
J Healthc Eng ; 2022: 3264367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299683

RESUMO

Brain tumor classification is a very important and the most prominent step for assessing life-threatening abnormal tissues and providing an efficient treatment in patient recovery. To identify pathological conditions in the brain, there exist various medical imaging technologies. Magnetic Resonance Imaging (MRI) is extensively used in medical imaging due to its excellent image quality and independence from ionizing radiations. The significance of deep learning, a subset of artificial intelligence in the area of medical diagnosis applications, has macadamized the path in rapid developments for brain tumor detection from MRI to higher prediction rate. For brain tumor analysis and classification, the convolution neural network (CNN) is the most extensive and widely used deep learning algorithm. In this work, we present a comparative performance analysis of transfer learning-based CNN-pretrained VGG-16, ResNet-50, and Inception-v3 models for automatic prediction of tumor cells in the brain. Pretrained models are demonstrated on the MRI brain tumor images dataset consisting of 233 images. Our paper aims to locate brain tumors with the utilization of the VGG-16 pretrained CNN model. The performance of our model will be evaluated on accuracy. As an outcome, we can estimate that the pretrained model VGG-16 determines highly adequate results with an increase in the accuracy rate of training and validation.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA