Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(5): 1019-1036.e9, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38677292

RESUMO

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Glicólise , Imunidade Inata , Linfócitos , Camundongos Knockout , Animais , Camundongos , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Transativadores/metabolismo , Transativadores/genética , Hexoquinase/metabolismo , Hexoquinase/genética , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Interleucina-17/metabolismo , Adaptação Fisiológica/imunologia
2.
Nat Struct Mol Biol ; 30(12): 1985-1995, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985687

RESUMO

Argonaute 2 (AGO2) is a cytoplasmic component of the miRNA pathway, with essential roles in development and disease. Yet little is known about its regulation in vivo. Here we show that in quiescent mouse splenocytes, AGO2 localizes almost exclusively to the nucleus. AGO2 subcellular localization is modulated by the Pi3K-AKT-mTOR pathway, a well-established regulator of quiescence. Signaling through this pathway in proliferating cells promotes AGO2 cytoplasmic accumulation, at least in part by stimulating the expression of TNRC6, an essential AGO2 binding partner in the miRNA pathway. In quiescent cells in which mTOR signaling is low, AGO2 accumulates in the nucleus, where it binds to young mobile transposons co-transcriptionally to repress their expression via its catalytic domain. Our data point to an essential but previously unrecognized nuclear role for AGO2 during quiescence as part of a genome-defense system against young mobile elements and provide evidence of RNA interference in the soma of mammals.


Assuntos
Proteínas Argonautas , MicroRNAs , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Linhagem Celular , Mamíferos/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
3.
Nat Genet ; 55(2): 280-290, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36717694

RESUMO

How enhancers activate their distal target promoters remains incompletely understood. Here we dissect how CTCF-mediated loops facilitate and restrict such regulatory interactions. Using an allelic series of mouse mutants, we show that CTCF is neither required for the interaction of the Sox2 gene with distal enhancers, nor for its expression. Insertion of various combinations of CTCF motifs, between Sox2 and its distal enhancers, generated boundaries with varying degrees of insulation that directly correlated with reduced transcriptional output. However, in both epiblast and neural tissues, enhancer contacts and transcriptional induction could not be fully abolished, and insertions failed to disrupt implantation and neurogenesis. In contrast, Sox2 expression was undetectable in the anterior foregut of mutants carrying the strongest boundaries, and these animals fully phenocopied loss of SOX2 in this tissue. We propose that enhancer clusters with a high density of regulatory activity can better overcome physical barriers to maintain faithful gene expression and phenotypic robustness.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Camundongos , Animais , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo
4.
Clin Cancer Res ; 29(2): 472-487, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36322002

RESUMO

PURPOSE: PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS. Our previous studies revealed preclinical efficacy of the MEK1/2 inhibitor, trametinib, and an IGF1R inhibitor, BMS-754807, but this combination was not pursued clinically due to intolerability in preclinical murine models. Here, we sought to identify a combination of an MEK1/2 inhibitor and IGF1R inhibitor, which would be tolerated in murine models and effective in both cell line and patient-derived xenograft models of RAS-mutant FN RMS. EXPERIMENTAL DESIGN: Using proliferation and apoptosis assays, we studied the factorial effects of trametinib and ganitumab (AMG 479), a mAb with specificity for human and murine IGF1R, in a panel of RAS-mutant FN RMS cell lines. The molecular mechanism of the observed synergy was determined using conventional and capillary immunoassays. The efficacy and tolerability of trametinib/ganitumab was assessed using a panel of RAS-mutated cell-line and patient-derived RMS xenograft models. RESULTS: Treatment with trametinib and ganitumab resulted in synergistic cellular growth inhibition in all cell lines tested and inhibition of tumor growth in four of six models of RAS-mutant RMS. The combination had little effect on body weight and did not produce thrombocytopenia, neutropenia, or hyperinsulinemia in tumor-bearing SCID beige mice. Mechanistically, ganitumab treatment prevented the phosphorylation of AKT induced by MEK inhibition alone. Therapeutic response to the combination was observed in models without a mutation in the PI3K/PTEN axis. CONCLUSIONS: We demonstrate that combined trametinib and ganitumab is effective in a genomically diverse panel of RAS-mutated FN RMS preclinical models. Our data also show that the trametinib/ganitumab combination likely has a favorable tolerability profile. These data support testing this combination in a phase I/II clinical trial for pediatric patients with relapsed or refractory RAS-mutated FN RMS.


Assuntos
Rabdomiossarcoma , Humanos , Animais , Camundongos , Criança , Linhagem Celular Tumoral , Camundongos SCID , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno
5.
J Thorac Oncol ; 17(12): 1375-1386, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049655

RESUMO

INTRODUCTION: The pathogenesis of thymic epithelial tumors remains largely unknown. We previously identified GTF2I L424H as the most frequently recurrent mutation in thymic epithelial tumors. Nevertheless, the precise role of this mutation in tumorigenesis of thymic epithelial cells is unclear. METHODS: To investigate the role of GTF2I L424H mutation in thymic epithelial cells in vivo, we generated and characterized a mouse model in which the Gtf2i L424H mutation was conditionally knocked-in in the Foxn1+ thymic epithelial cells. Digital spatial profiling was performed on thymomas and normal thymic tissues with GeoMx-mouse whole transcriptome atlas. Immunohistochemistry staining was performed using both mouse tissues and human thymic epithelial tumors. RESULTS: We observed that the Gtf2i mutation impairs development of the thymic medulla and maturation of medullary thymic epithelial cells in young mice and causes tumor formation in the thymus of aged mice. Cell cycle-related pathways, such as E2F targets and MYC targets, are enriched in the tumor epithelial cells. Results of gene set variation assay analysis revealed that gene signatures of cortical thymic epithelial cells and thymic epithelial progenitor cells are also enriched in the thymomas of the knock-in mice, which mirrors the human counterparts in The Cancer Genome Atlas database. Immunohistochemistry results revealed similar expression pattern of epithelial cell markers between mouse and human thymomas. CONCLUSIONS: We have developed and characterized a novel thymoma mouse model. This study improves knowledge of the molecular drivers in thymic epithelial cells and provides a tool for further study of the biology of thymic epithelial tumors and for development of novel therapies.


Assuntos
Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Fatores de Transcrição TFIII , Fatores de Transcrição TFII , Animais , Humanos , Camundongos , Mutação , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Timoma/genética , Timoma/patologia , Neoplasias do Timo/genética , Neoplasias do Timo/patologia , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFIII/genética
6.
Mucosal Immunol ; 15(5): 882-895, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35778600

RESUMO

The chemokine receptor CCR9 equips T cells with the ability to respond to CCL25, a chemokine that is highly expressed in the thymus and the small intestine (SI). Notably, CCR9 is mostly expressed on CD8 but not on CD4 lineage T cells, thus imposing distinct tissue tropism on CD4 and CD8 T cells. The molecular basis and the consequences for such a dichotomy, however, have not been fully examined and explained. Here, we demonstrate that the forced expression of CCR9 interferes with the tissue trafficking and differentiation of CD4 T cells in SI intraepithelial tissues. While CCR9 overexpression did not alter CD4 T cell generation in the thymus, the forced expression of CCR9 was detrimental for the proper tissue distribution of CD4 T cells in the periphery, and strikingly also for their terminal differentiation in the gut epithelium. Specifically, the differentiation of SI epithelial CD4 T cells into immunoregulatory CD4+CD8αα+ T cells was impaired by overexpression of CCR9 and conversely increased by the genetic deletion of CCR9. Collectively, our results reveal a previously unappreciated role for CCR9 in the tissue homeostasis and effector function of CD4 T cells in the gut.


Assuntos
Linfócitos Intraepiteliais , Receptores CCR , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Intestinos , Linfócitos Intraepiteliais/metabolismo , Receptores CCR/genética , Receptores CCR/metabolismo
7.
Front Immunol ; 12: 642856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054809

RESUMO

Invariant NKT (iNKT) cells are thymus-generated innate-like T cells, comprised of three distinct subsets with divergent effector functions. The molecular mechanism that drives the lineage trifurcation of immature iNKT cells into the NKT1, NKT2, and NKT17 subsets remains a controversial issue that remains to be resolved. Because cytokine receptor signaling is necessary for iNKT cell generation, cytokines are proposed to contribute to iNKT subset differentiation also. However, the precise roles and requirements of cytokines in these processes are not fully understood. Here, we show that IL-2Rß, a nonredundant component of the IL-15 receptor complex, plays a critical role in both the development and differentiation of thymic iNKT cells. While the induction of IL-2Rß expression on postselection thymocytes is necessary to drive the generation of iNKT cells, surprisingly, premature IL-2Rß expression on immature iNKT cells was detrimental to their development. Moreover, while IL-2Rß is necessary for NKT1 generation, paradoxically, we found that the increased abundance of IL-2Rß suppressed NKT1 generation without affecting NKT2 and NKT17 cell differentiation. Thus, the timing and abundance of IL-2Rß expression control iNKT lineage fate and development, thereby establishing cytokine receptor expression as a critical regulator of thymic iNKT cell differentiation.


Assuntos
Subunidade beta de Receptor de Interleucina-2/fisiologia , Células T Matadoras Naturais/fisiologia , Timo/imunologia , Animais , Diferenciação Celular , Interleucina-15/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/classificação , Células T Matadoras Naturais/citologia , Fator de Transcrição STAT5/fisiologia
8.
Dev Biol ; 477: 164-176, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34023333

RESUMO

Intraflagellar transport (IFT) is an evolutionarily conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella, including mammalian sperm tails. Depletion of IFT27, a component of the IFT complex, in male germ cells results in infertility associated with disrupted sperm flagella structure and motility. Leucine zipper transcription factor-like 1 (LZTFL1) is an IFT27 associated protein. LZTFL1, also known as BBS17, is a Bardet-Biedl syndrome (BBS) associated protein. Patients carrying biallelic variants of LZTFL1 gene exhibit the common BBS phenotypes. The global Lztfl1 knockout mice showed abnormal growth rate and retinal degeneration, typical of BBS phenotype. However, it is not clear if Lztfl1 has a role in male fertility. The LZTFL1 protein is highly and predominantly expressed in mouse testis. During the first wave of spermatogenesis, the protein is only expressed during spermiogenesis phase from the round spermatid stage and displays a cytoplasmic localization with a vesicular distribution pattern. At the elongated spermatid stage, LZTFL1 is present in the developing flagella and appears also close to the manchette. Fertility of Lztfl1 knockout mice was significantly reduced and associated with low sperm motility and a high level of abnormal sperm (astheno-teratozoospermia). In vitro assessment of fertility revealed reduced fertilization and embryonic development when using sperm from homozygous mutant mice. In addition, we observed a significant decrease of the testicular IFT27 protein level in Lztfl1 mutant mice contrasting with a stable expression levels of other IFT proteins, including IFT20, IFT81, IFT88 and IFT140. Overall, our results support strongly the important role of LZTFL1 in mouse spermatogenesis and male fertility.


Assuntos
Fertilidade/fisiologia , Espermatozoides/fisiologia , Fatores de Transcrição/fisiologia , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Feminino , Fertilidade/genética , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Ligação Proteica , RNA Mensageiro/metabolismo , Espermatogênese/genética , Espermatogênese/fisiologia , Fatores de Transcrição/genética , Proteínas rab de Ligação ao GTP/fisiologia
9.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33555295

RESUMO

The thymoproteasome expressed specifically in thymic cortical epithelium optimizes the generation of CD8+ T cells; however, how the thymoproteasome contributes to CD8+ T cell development is unclear. Here, we show that the thymoproteasome shapes the TCR repertoire directly in cortical thymocytes before migration to the thymic medulla. We further show that the thymoproteasome optimizes CD8+ T cell production independent of the thymic medulla; independent of additional antigen-presenting cells, including medullary thymic epithelial cells and dendritic cells; and independent of apoptosis-mediated negative selection. These results indicate that the thymoproteasome hardwires the TCR repertoire of CD8+ T cells with cortical positive selection independent of negative selection in the thymus.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Timo/enzimologia , Animais , Apoptose/imunologia , Sequência de Bases , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Epitélio/enzimologia , Epitélio/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Análise de Sequência de RNA/métodos , Timócitos/imunologia , Timo/imunologia , Éxons VDJ
10.
Front Immunol ; 11: 470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265924

RESUMO

The transcription factor TCF-1 (encoded by Tcf7) plays critical roles in several lineages of hematopoietic cells. In this study, we examined the molecular basis for Tcf7 regulation in T cells, innate lymphoid cells, and migratory conventional dendritic cells that we find express Tcf7. We identified a 1 kb regulatory element crucial for the initiation of Tcf7 expression in T cells and innate lymphoid cells, but dispensable for Tcf7 expression in Tcf7-expressing dendritic cells. Within this region, we identified a Notch binding site important for the initiation of Tcf7 expression in T cells but not in innate lymphoid cells. Our work establishes that the same regulatory element is used by distinct transcriptional controllers to initiate Tcf7 expression in T cells and ILCs.


Assuntos
Fator 1-alfa Nuclear de Hepatócito/metabolismo , Linfócitos/imunologia , Elementos Reguladores de Transcrição/genética , Linfócitos T/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Imunidade Inata , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Nat Commun ; 11(1): 1472, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193376

RESUMO

The Hippo TEAD-transcriptional regulators YAP1 and TAZ are central for cell renewal and cancer growth; however, the specific downstream gene networks involved in their activity are not completely understood. Here we introduce TEADi, a genetically encoded inhibitor of the interaction of YAP1 and TAZ with TEAD, as a tool to characterize the transcriptional networks and biological effects regulated by TEAD transcription factors. Blockage of TEAD activity by TEADi in human keratinocytes and mouse skin leads to reduced proliferation and rapid activation of differentiation programs. Analysis of gene networks affected by TEADi and YAP1/TAZ knockdown identifies KLF4 as a central transcriptional node regulated by YAP1/TAZ-TEAD in keratinocyte differentiation. Moreover, we show that TEAD and KLF4 can regulate the activity of each other, indicating that these factors are part of a transcriptional regulatory loop. Our study establishes TEADi as a resource for studying YAP1/TAZ-TEAD dependent effects.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Redes Reguladoras de Genes , Homeostase , Fatores de Transcrição Kruppel-Like/metabolismo , Pele/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células HEK293 , Homeostase/genética , Humanos , Inflamação/patologia , Queratinócitos/citologia , Queratinócitos/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Modelos Animais , Modelos Biológicos , Ligação Proteica , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição Gênica , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
12.
J Immunol ; 203(3): 686-695, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243087

RESUMO

The thymus is critical for the establishment of the adaptive immune system and the development of a diverse T cell repertoire. T cell development depends upon cell-cell interactions with epithelial cells in the thymus. The thymus is composed of two different types of epithelial cells: cortical and medullary epithelial cells. Both of these express and critically depend on the transcription factor Foxn1 Foxn1 is also expressed in the hair follicle, and disruption of Foxn1 function in mice results in severe thymic developmental defects and the hairless (nude) phenotype. Despite its importance, little is known about the direct regulation of Foxn1 expression. In this study, we identify a cis-regulatory element (RE) critical for expression of Foxn1 in mouse thymic epithelial cells but dispensable for expression in hair follicles. Analysis of chromatin accessibility, histone modifications, and sequence conservation identified regions within the first intron of Foxn1 that possessed the characteristics of REs. Systematic knockout of candidate regions lead us to identify a 1.6 kb region that, when deleted, results in a near total disruption of thymus development. Interestingly, Foxn1 expression and function in the hair follicle were unaffected. RNA fluorescent in situ hybridization showed a near complete loss of Foxn1 mRNA expression in the embryonic thymic bud. Our studies have identified a genomic RE with thymic-specific control of Foxn1 gene expression.


Assuntos
Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Elementos Reguladores de Transcrição/genética , Linfócitos T/imunologia , Timo/metabolismo , Animais , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Folículo Piloso/metabolismo , Camundongos , Camundongos Knockout , Camundongos Nus , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Linfócitos T/citologia , Timo/citologia
13.
Sci Transl Med ; 10(448)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973406

RESUMO

The RAS isoforms are frequently mutated in many types of human cancers, including PAX3/PAX7 fusion-negative rhabdomyosarcoma. Pediatric RMS arises from skeletal muscle progenitor cells that have failed to differentiate normally. The role of mutant RAS in this differentiation blockade is incompletely understood. We demonstrate that oncogenic RAS, acting through the RAF-MEK [mitogen-activated protein kinase (MAPK) kinase]-ERK (extracellular signal-regulated kinase) MAPK effector pathway, inhibits myogenic differentiation in rhabdomyosarcoma by repressing the expression of the prodifferentiation myogenic transcription factor, MYOG. This repression is mediated by ERK2-dependent promoter-proximal stalling of RNA polymerase II at the MYOG locus. Small-molecule screening with a library of mechanistically defined inhibitors showed that RAS-driven RMS is vulnerable to MEK inhibition. MEK inhibition with trametinib leads to the loss of ERK2 at the MYOG promoter and releases the transcriptional stalling of MYOG expression. MYOG subsequently opens chromatin and establishes super-enhancers at genes required for late myogenic differentiation. Furthermore, trametinib, in combination with an inhibitor of IGF1R, potently decreases rhabdomyosarcoma cell viability and slows tumor growth in xenograft models. Therefore, this combination represents a potential therapeutic for RAS-mutated rhabdomyosarcoma.


Assuntos
Elementos Facilitadores Genéticos/genética , Genes ras , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Miogenina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Rabdomiossarcoma/genética , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Mioblastos/patologia , Proteínas de Fusão Oncogênica/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Receptor IGF Tipo 1/metabolismo , Rabdomiossarcoma/enzimologia , Rabdomiossarcoma/patologia , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Genet Genomics ; 43(6): 381-91, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27312011

RESUMO

Bardet-Biedl syndrome (BBS) is a heterogeneous disease characterized by deficiencies in various organs that are caused by defects in genes involved in the genesis, structural maintenance, and protein trafficking of cilia. Leucine zipper transcription factor-like 1 (LZTFL1) has been identified as a BBS protein (BBS17), because patients with mutations in this gene exhibit the common BBS phenotypes. In this study, we generated a knockout mouse model to investigate the effects of LZTFL1 depletion. Lztfl1 knockout mice were born with low birth weight, reached similar weight to those of wild-type mice at 10 weeks of age, and later gained more weight than their wild-type counterparts. LZTFL1 was localized to the primary cilium of kidney cells, and the absence of LZTFL1 increased the ciliary localization of BBS9. Moreover, in the retinas of Lztfl1 knockout mice, the photoreceptor outer segment was shortened, the distal axoneme of photoreceptor connecting cilium was significantly enlarged, and rhodopsin was targeted to the outer nuclear layer. TUNEL assay showed that many of these abnormal photoreceptor cells in Lztfl1 knockout mice underwent apoptosis. Interestingly, the absence of LZTFL1 caused an abnormal increase of the adaptor protein complex 1 (AP1) in some photoreceptor cells. Based on these data, we conclude that LZTFL1 is a cilium protein and regulates animal weight and photoreceptor connecting cilium function probably by controlling microtubule assembly and protein trafficking in cilia.


Assuntos
Síndrome de Bardet-Biedl/genética , Técnicas de Inativação de Genes , Crescimento e Desenvolvimento/genética , Degeneração Retiniana/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Animais , Axonema/metabolismo , Peso Corporal/genética , Morte Celular , Cílios/metabolismo , Proteínas do Citoesqueleto , Progressão da Doença , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Fenótipo , Células Fotorreceptoras/metabolismo , Transporte Proteico , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Rodopsina/metabolismo
15.
Cell ; 159(7): 1524-37, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25483777

RESUMO

The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA(+) enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment.


Assuntos
Linfócitos B/metabolismo , Carcinogênese , Citidina Desaminase/genética , Elementos Facilitadores Genéticos , Animais , Dano ao DNA , Humanos , Linfoma/metabolismo , Camundongos
16.
Proc Natl Acad Sci U S A ; 110(33): 13534-9, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23904478

RESUMO

Increased serum levels of IL-15 are reported in type 1 diabetes (T1D). Here we report elevated serum soluble IL-15Rα levels in human T1D. To investigate the role of IL-15/IL-15Rα in the pathogenesis of T1D, we generated double transgenic mice with pancreatic ß-cell expression of IL-15 and IL-15Rα. The mice developed hyperglycemia, marked mononuclear cell infiltration, ß-cell destruction, and anti-insulin autoantibodies that mimic early human T1D. The diabetes in this model was reversed by inhibiting IL-15 signaling with anti-IL2/IL15Rß (anti-CD122), which blocks IL-15 transpresentation. Furthermore, the diabetes could be reversed by administration of the Janus kinase 2/3 inhibitor tofacitinib, which blocks IL-15 signaling. In an alternative diabetes model, nonobese diabetic mice, IL15/IL-15Rα expression was increased in islet cells in the prediabetic stage, and inhibition of IL-15 signaling with anti-CD122 at the prediabetic stage delayed diabetes development. In support of the view that these observations reflect the conditions in humans, we demonstrated pancreatic islet expression of both IL-15 and IL-15Rα in human T1D. Taken together our data suggest that disordered IL-15 and IL-15Rα may be involved in T1D pathogenesis and the IL-15/IL15Rα system and its signaling pathway may be rational therapeutic targets for early T1D.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Modelos Animais de Doenças , Células Secretoras de Insulina/metabolismo , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Interleucina-15/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Interleucina-15/antagonistas & inibidores , Interleucina-15/sangue , Subunidade alfa de Receptor de Interleucina-15/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Piperidinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia
17.
Cell ; 153(5): 988-99, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706737

RESUMO

Lymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation. In G0, ∼90% of promoters from genes to be expressed in cycling lymphocytes are polymerase loaded but unmelted and support only basal transcription. Furthermore, the transition from abortive to productive elongation is kinetically limiting, causing polymerases to accumulate nearer to transcription start sites. Resting lymphocytes also limit the expression of the transcription factor IIH complex, including XPB and XPD helicases involved in promoter melting and open complex extension. To date, two rate-limiting steps have been shown to control global gene expression in eukaryotes: preinitiation complex assembly and polymerase pausing. Our studies identify promoter melting as a third key regulatory step and propose that this mechanism ensures a prompt lymphocyte response to invading pathogens.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , Ativação Linfocitária , Linfócitos/metabolismo , Regiões Promotoras Genéticas , Animais , Linfócitos B/imunologia , Linhagem Celular Tumoral , DNA de Cadeia Simples/metabolismo , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Linfócitos/citologia , Linfócitos/imunologia , Camundongos , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica
18.
Mol Carcinog ; 34(2): 72-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12112313

RESUMO

Expression of the human papillomavirus (HPV) type 16 E6 and E7 gene products is a risk factor for human cervical carcinogenesis as well as skin and oral carcinogenesis. Expression of the HPV-16 E7 gene in mouse skin induces hyperplasia and enhances tumor promotion. Expression of dominant-negative c-jun (TAM67) in the mouse skin protects mice from 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced papillomagenesis without blocking mitogen-induced hyperproliferation. To determine the role of activator protein-1 (AP-1) in HPV-induced cancer, we crossed HPV-16 E7 mice with TAM67 mice and analyzed the effects of DMBA/TPA on tumor promotion. We showed that expression of TAM67 protected mice from HPV-16 E7-enhanced tumorigenesis, suggesting AP-1 as a target for prevention of HPV-induced cancer.


Assuntos
Genes Dominantes , Genes jun , Neoplasias Experimentais/prevenção & controle , Proteínas Oncogênicas Virais/genética , Papillomaviridae/patogenicidade , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Proteínas E7 de Papillomavirus , Acetato de Tetradecanoilforbol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...