Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 81(12): 1712-1721, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977808

RESUMO

OBJECTIVES: Families that contain multiple siblings affected with childhood onset of systemic lupus erythematosus (SLE) likely have strong genetic predispositions. We performed whole exome sequencing (WES) to identify familial rare risk variants and to assess their effects in lupus. METHODS: Sanger sequencing validated the two ultra-rare, predicted pathogenic risk variants discovered by WES and identified additional variants in 562 additional patients with SLE. Effects of a splice site variant and a frameshift variant were assessed using a Minigene assay and CRISPR/Cas9-mediated knock-in (KI) mice, respectively. RESULTS: The two familial ultra-rare, predicted loss-of-function (LOF) SAT1 variants exhibited X-linked recessive Mendelian inheritance in two unrelated African-American families. Each LOF variant was transmitted from the heterozygous unaffected mother to her two sons with childhood-onset SLE. The p.Asp40Tyr variant affected a splice donor site causing deleterious transcripts. The young hemizygous male and homozygous female Sat1 p.Glu92Leufs*6 KI mice spontaneously developed splenomegaly, enlarged glomeruli with leucocyte infiltration, proteinuria and elevated expression of type I interferon-inducible genes. SAT1 is highly expressed in neutrophils and encodes spermidine/spermine-N1-acetyltransferase 1 (SSAT1), a rate-limiting enzyme in polyamine catabolism. Young male KI mice exhibited neutrophil defects and decreased proportions of Foxp3 +CD4+ T-cell subsets. Circulating neutrophil counts and proportions of Foxp3 +CD4+ T cells correlated with decreased plasma levels of spermine in treatment-naive, incipient SLE patients. CONCLUSIONS: We identified two novel SAT1 LOF variants, showed the ability of the frameshift variant to confer murine lupus, highlighted the pathogenic role of dysregulated polyamine catabolism and identified SAT1 LOF variants as new monogenic causes for SLE.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Lúpus Eritematoso Sistêmico , Animais , Criança , Feminino , Humanos , Masculino , Camundongos , Predisposição Genética para Doença , Homozigoto , Lúpus Eritematoso Sistêmico/genética , Espermina/sangue , Doenças Genéticas Ligadas ao Cromossomo X/genética , Acetiltransferases/genética
2.
J Cardiovasc Dev Dis ; 9(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200715

RESUMO

Mitral valve prolapse (MVP) is a common cardiac valve disease that often progresses to serious secondary complications requiring surgery. MVP manifests as extracellular matrix disorganization and biomechanically incompetent tissues in the adult setting. However, MVP has recently been shown to have a developmental basis, as multiple causal genes expressed during embryonic development have been identified. Disease phenotypes have been observed in mouse models with human MVP mutations as early as birth. This study focuses on the developmental function of DCHS1, one of the first genes to be shown as causal in multiple families with non-syndromic MVP. By using various biochemical techniques as well as mouse and cell culture models, we demonstrate a unique link between DCHS1-based cell adhesions and the septin-actin cytoskeleton through interactions with cytoplasmic protein Lix1-Like (LIX1L). This DCHS1-LIX1L-SEPT9 axis interacts with and promotes filamentous actin organization to direct cell-ECM alignment and valve tissue shape.

3.
Exp Dermatol ; 31(3): 330-340, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34657330

RESUMO

Loss of function mutations in HOXC13 have been associated with Ectodermal Dysplasia-9, Hair/Nail Type (ECTD9) in consanguineous families, characterized by sparse to complete absence of hair and nail dystrophy. Here we characterize the spontaneous mouse mutation Naked (N) as a terminal truncation in the Hoxc13 (homeobox C13) gene. Similar to previous reports for homozygous Hoxc13 knock-out (KO) mice, homozygous N/N mice exhibit generalized alopecia with abnormal nails and a short lifespan. However, in contrast to Hoxc13 heterozygous KO mice, N/+ mice show generalized or partial alopecia, associated with loss of hair fibres, along with normal lifespan and fertility. Our data point to a lack of nonsense-mediated Hoxc13 transcript decay and the presence of the truncated mutant protein in N/N and N/+ hair follicles, thus suggesting a dominant-negative mutation. To our knowledge, this is the first report of a semi-dominant and potentially dominant-negative mutation affecting Hoxc13/HOXC13. Furthermore, recreating the N mutant allele in mice using CRISPR/Cas9-mediated genome editing resulted in the same spectrum of deficiencies as those associated with the spontaneous Naked mutation, thus confirming that N is indeed a Hoxc13 mutant allele. Considering the low viability of the Hoxc13 KO mice, the Naked mutation provides an attractive new model for studying ECTD9 disease mechanisms.


Assuntos
Displasia Ectodérmica , Doenças da Unha , Alopecia/genética , Animais , Códon sem Sentido , Displasia Ectodérmica/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Mutação , Doenças da Unha/genética , Fatores de Transcrição/genética
4.
Sci Transl Med ; 11(493)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118289

RESUMO

Mitral valve prolapse (MVP) affects 1 in 40 people and is the most common indication for mitral valve surgery. MVP can cause arrhythmias, heart failure, and sudden cardiac death, and to date, the causes of this disease are poorly understood. We now demonstrate that defects in primary cilia genes and their regulated pathways can cause MVP in familial and sporadic nonsyndromic MVP cases. Our expression studies and genetic ablation experiments confirmed a role for primary cilia in regulating ECM deposition during cardiac development. Loss of primary cilia during development resulted in progressive myxomatous degeneration and profound mitral valve pathology in the adult setting. Analysis of a large family with inherited, autosomal dominant nonsyndromic MVP identified a deleterious missense mutation in a cilia gene, DZIP1 A mouse model harboring this variant confirmed the pathogenicity of this mutation and revealed impaired ciliogenesis during development, which progressed to adult myxomatous valve disease and functional MVP. Relevance of primary cilia in common forms of MVP was tested using pathway enrichment in a large population of patients with MVP and controls from previously generated genome-wide association studies (GWAS), which confirmed the involvement of primary cilia genes in MVP. Together, our studies establish a developmental basis for MVP through altered cilia-dependent regulation of ECM and suggest that defects in primary cilia genes can be causative to disease phenotype in some patients with MVP.


Assuntos
Cílios/patologia , Prolapso da Valva Mitral/etiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Matriz Extracelular/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Valvas Cardíacas/diagnóstico por imagem , Valvas Cardíacas/crescimento & desenvolvimento , Humanos , Masculino , Camundongos Knockout , Prolapso da Valva Mitral/diagnóstico por imagem , Prolapso da Valva Mitral/genética , Morfogênese , Linhagem , Fatores de Tempo , Proteínas Supressoras de Tumor/metabolismo
5.
PLoS Genet ; 15(3): e1008002, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30893315

RESUMO

Mammary epithelial progenitors are the normal cell-of-origin of breast cancer. We previously defined a population of p27+ quiescent hormone-responsive progenitor cells in the normal human breast whose frequency associates with breast cancer risk. Here, we describe that deletion of the Cdkn1b gene encoding the p27 cyclin-dependent kinase inhibitor in the estrogen-induced mammary tumor-susceptible ACI rat strain leads to a decrease in the relative frequencies of Cd49b+ mammary luminal epithelial progenitors and pregnancy-related differentiation. We show by comprehensive gene expression profiling of purified progenitor and differentiated mammary epithelial cell populations that p27 deletion has the most pronounced effects on luminal progenitors. Cdkn1b-/- females have decreased fertility, but rats that are able to get pregnant had normal litter size and were able to nurse their pups implying that loss of p27 in ACI rats does not completely abrogate ovarian function and lactation. Reciprocal mammary gland transplantation experiments indicate that the p27-loss-induced changes in mammary epithelial cells are not only caused by alterations in their intrinsic properties, but are likely due to altered hormonal signaling triggered by the perturbed systemic endocrine environment observed in Cdkn1b-/- females. We also observed a decrease in the frequency of mammary epithelial cells positive for progesterone receptor (Pr) and FoxA1, known direct transcriptional targets of the estrogen receptor (Erα), and an increase in phospho-Stat5 positive cells commonly induced by prolactin (Prl). Characterization of genome-wide Pr chromatin binding revealed distinct binding patterns in mammary epithelial cells of Cdkn1b+/+ and Cdkn1b-/- females and enrichment in genes with known roles in Notch, ErbB, leptin, and Erα signaling and regulation of G1-S transition. Our data support a role for p27 in regulating the pool size of hormone-responsive luminal progenitors that could impact breast cancer risk.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Animais , Animais Geneticamente Modificados/genética , Neoplasias da Mama/genética , Diferenciação Celular , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Endócrinas/fisiologia , Células Epiteliais , Receptor alfa de Estrogênio , Estrogênios , Feminino , Predisposição Genética para Doença/genética , Humanos , Integrina alfa1 , Glândulas Mamárias Animais , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Gravidez , Progesterona , Ratos , Ratos Endogâmicos ACI , Ratos Sprague-Dawley , Receptores de Estrogênio , Receptores de Progesterona , Fatores de Risco , Transdução de Sinais , Células-Tronco
6.
Genesis ; 54(10): 519-533, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27506447

RESUMO

The mouse zinc-finger gene Zfp521 (also known as ecotropic viral insertion site 3; Evi3; and ZNF521 in humans) has been identified as a B-cell proto-oncogene, causing leukemia in mice following retroviral insertions in its promoter region that drive Zfp521 over-expression. Furthermore, ZNF521 is expressed in human hematopoietic cells, and translocations between ZNF521 and PAX5 are associated with pediatric acute lymphoblastic leukemia. However, the regulatory factors that control Zfp521 expression directly have not been characterized. Here we demonstrate that the transcription factors SPI1 (PU.1) and HOXC13 synergistically regulate Zfp521 expression, and identify the regions of the Zfp521 promoter required for this transcriptional activity. We also show that SPI1 and HOXC13 activate Zfp521 in a dose-dependent manner. Our data support a role for this regulatory mechanism in vivo, as transgenic mice over-expressing Hoxc13 in the fetal liver show a strong correlation between Hoxc13 expression levels and Zfp521 expression. Overall these experiments provide insights into the regulation of Zfp521 expression in a nononcogenic context. The identification of transcription factors capable of activating Zfp521 provides a foundation for further investigation of the regulatory mechanisms involved in ZFP521-driven cell differentiation processes and diseases linked to Zfp521 mis-expression.


Assuntos
Proteínas de Homeodomínio/genética , Leucemia/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Animais , Linfócitos B/metabolismo , Diferenciação Celular/genética , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Leucemia/patologia , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX5/biossíntese , Fator de Transcrição PAX5/genética , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/biossíntese , Retroviridae/genética , Transativadores/biossíntese , Fatores de Transcrição/biossíntese
7.
Exp Mol Pathol ; 99(3): 441-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26321246

RESUMO

The cholesterol-metabolizing enzyme sterol O-acetyltransferase (SOAT1) is implicated in an increasing number of biological and pathological processes in a number of organ systems, including the differentiation of the hair shaft. While the functional and regulatory mechanisms underlying these diverse functional roles remain poorly understood, the compartment of the hair shaft known as medulla, affected by mutations in Soat1, may serve as a suitable model for defining some of these mechanisms. A comparative analysis of mRNA and protein expression patterns of Soat1/SOAT1 and the transcriptional regulator Hoxc13/HOXC13 in postnatal skin of FVB/NTac mice indicated co-expression in the most proximal cells of the differentiating medulla. This finding combined with the significant downregulation of Soat1 expression in postnatal skin of both Hoxc13 gene-targeted and transgenic mice based on previously reported DNA microarray results suggests a potential regulatory relationship between the two genes. Non-detectable SOAT1 expression in the defective hair follicle medulla of Hoxc13(tm1Mrc) mice and evidence for binding of HOXC13 to the Soat1 upstream control region obtained by ChIP assay suggests that Soat1 is a downstream regulatory target for HOXC13 during medulla differentiation.


Assuntos
Regulação da Expressão Gênica/genética , Cabelo/metabolismo , Proteínas de Homeodomínio/metabolismo , Esterol O-Aciltransferase/genética , Animais , Diferenciação Celular , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pele/metabolismo , Pele/patologia
8.
World J Biol Chem ; 6(3): 65-70, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26322165

RESUMO

Steadily increasing evidence supports the idea that genetic diversities in the vascular bed are, in addition to hemodynamic influences, a major contributing factor in determining region-specific cardiovascular disease susceptibility. Members of the phylogenetically highly conserved Hox gene family of developmental regulators have to be viewed as prime candidates for determining these regional genetic differences in the vasculature. During embryonic patterning, the regionally distinct and precisely choreographed expression patterns of HOX transcription factors are essential for the correct specification of positional identities. Apparently, these topographic patterns are to some degree retained in certain adult tissues, including the circulatory system. While an understanding of the functional significance of these localized Hox activities in adult blood vessels is only beginning to emerge, an argument can be made for a role of Hox genes in the maintenance of vessel wall homeostasis and functional integrity on the one hand, and in regulating the development and progression of regionally restricted vascular pathologies, on the other. Initial functional studies in animal models, as well as data from clinical studies provide some level of support for this view. The data suggest that putative genetic regulatory networks of Hox-dependent cardiovascular disease processes include genes of diverse functional categories (extracellular matrix remodeling, transmembrane signaling, cell cycle control, inflammatory response, transcriptional control, etc.), as potential targets in both vascular smooth muscle and endothelial cells, as well as cell populations residing in the adventitia.

9.
Exp Mol Pathol ; 97(3): 525-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446841

RESUMO

Alopecia areata (AA), a cell mediated autoimmune disease, is the second most common form of hair loss in humans. While the autoimmune disease is responsible for the underlying pathogenesis, the alopecia phenotype is ultimately due to hair shaft fragility and breakage associated with structural deficits. Quantitative trait genetic analyses using the C3H/HeJ mouse AA model identified cysteine-rich secretory protein 1 (Crisp1), a hair shaft structural protein, as a candidate gene within the major AA locus. Crisp1 transcripts in the skin at various times during disease development were barely detectable. In situ hybridization identified Crisp1 expression within the medulla of hair shafts from clinically normal strains of mice but not C3H/HeJ mice with AA. Follow-up work with 5-day-old C3H/HeJ mice with normal hair also had essentially no expression of Crisp1. Other non-inflammatory based follicular dystrophy mouse models with similar hair shaft abnormalities also have little or no Crisp1 expression. Shotgun proteomics, used to determine strain difference in hair proteins, confirmed that there was very little CRISP1 within normal C3H/HeJ mouse hair in comparison to 11 other strains. However, mutant mice with hair medulla defects also had undetectable levels of CRISP1 in their hair. Crisp1 null mice had normal skin, hair follicles, and hair shafts indicating that the lack of the CRISP1 protein does not translate directly into defects in the hair shaft or hair follicle. These results suggest that CRISP1 may be an important structural component of mouse hair and that its strain-specific dysregulation may indicate a predisposition to hair shaft disease such as AA.


Assuntos
Alopecia em Áreas/metabolismo , Cabelo/metabolismo , Glicoproteínas de Membrana/metabolismo , Alopecia em Áreas/genética , Alopecia em Áreas/patologia , Animais , Modelos Animais de Doenças , Cabelo/patologia , Hibridização In Situ , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
11.
Biol Open ; 1(5): 430-5, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213434

RESUMO

The distinct topographic Hox expression patterns observed in vascular smooth muscle cells (VSMCs) of the adult cardiovascular system suggest that these transcriptional regulators are critical for maintaining region-specific physiological properties of blood vessels. To test this proposition, we expanded the vascular Hoxc11 expression domain normally restricted to the lower limbs by utilizing an innovative integrated tetracycline regulatory system and Transgelin promoter elements to induce Hoxc11 expression universally in VSMCs of transgenic mice. Ectopic Hoxc11 expression in carotid arteries, aortic arch and descending aorta resulted in drastic vessel wall remodeling involving elastic laminae fragmentation, medial smooth muscle cell loss, and intimal lesion formation. None of these alterations were observed upon induction of Hoxc11 transgene expression in the femoral artery, i.e. the natural Hoxc11 activity domain, although this vessel was greatly enlarged, comparable to the topographically restricted vascular changes seen in Hoxc11(-/-) mice. To begin defining Hoxc11-controlled pathways of vascular remodeling, we performed immunolabeling studies in conjunction with co-transfection and chromatin immunoprecipitation (ChIP) assays using mouse vascular smooth muscle (MOVAS) cells. The results suggest direct transcriptional control of two members of the matrix metalloproteinase (Mmp) family, including Mmp2 and Mmp9 that are known as key players in the inception and progression of vascular remodeling events. In summary, the severe vascular abnormalities resulting from the induced dysregulated expression of a Hox gene with regional vascular patterning functions suggest that proper Hox function and regulation is critical for maintaining vascular functional integrity.

12.
J Invest Dermatol ; 131(4): 828-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21191399

RESUMO

Among the Hox genes, homeobox C13 (Hoxc13) has been shown to be essential for proper hair shaft differentiation, as Hoxc13 gene-targeted (Hoxc13(tm1Mrc)) mice completely lack external hair. Because of the remarkable overt phenotypic parallels to the Foxn1(nu) (nude) mutant mice, we sought to determine whether Hoxc13 and forkhead box N1 (Foxn1) might act in a common pathway of hair follicle (HF) differentiation. We show that the alopecia exhibited by both the Hoxc13(tm1Mrc) and Foxn1(nu) mice is because of strikingly similar defects in hair shaft differentiation and that both mutants suffer from a severe nail dystrophy. These phenotypic similarities are consistent with the extensive overlap between Hoxc13 and Foxn1 expression patterns in the HF and the nail matrix. Furthermore, DNA microarray analysis of skin from Hoxc13(tm1Mrc) mice identified Foxn1 as significantly downregulated along with numerous hair keratin genes. This Foxn1 downregulation apparently reflects the loss of direct transcriptional control by HOXC13 as indicated by our results obtained through co-transfection and chromatin immunoprecipitation (ChIP) assays. As presented in the discussion, these data support a regulatory model of keratinocyte differentiation in which HOXC13-dependent activation of Foxn1 is part of a regulatory cascade controlling the expression of terminal differentiation markers.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Casco e Garras/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Regulação para Baixo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/patologia , Casco e Garras/crescimento & desenvolvimento , Casco e Garras/patologia , Queratinócitos/patologia , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Nus , Transfecção
14.
Differentiation ; 78(5): 292-300, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19683850

RESUMO

The hair fiber is made of specialized keratinocytes, known as trichocytes, that primarily express hair keratins, which are cemented by a multitude of keratin-associated proteins (KAPs). The hair keratins form the intermediate filament cytoskeleton of the trichocytes, which are linked to abundant cell-cell adhesion junctions, called desmosomes. Desmoglein 4 (DSG4) is the major desmosomal cadherin expressed in the hair shaft cortex where the hair keratins are highly expressed. In humans, mutations affecting either the hair keratins or DSG4 lead to beaded hair phenotypes with features of monilethrix. In this work, we postulated that the regulatory pathways governing the expression of hair shaft components, such as hair keratins and DSG4, are shared. Therefore, we studied the transcriptional regulation of DSG4 by transcription factors/pathways that are known regulators of hair keratin or KAP expression. We show that HOXC13, LEF1 and FOXN1 repress DSG4 transcription and provide in vitro and in vivo evidence correlating the Notch pathway with the activation and/or maintenance of DSG4 expression in the hair follicle.


Assuntos
Diferenciação Celular , Desmogleínas/metabolismo , Cabelo/anatomia & histologia , Cabelo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Desmogleínas/deficiência , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Ratos , Receptores Notch/metabolismo , Transdução de Sinais , Transcrição Gênica
15.
Vet Dermatol ; 19(6): 358-67, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19037915

RESUMO

The mouse In(15)2Rl (hairy ears, Eh) mutation is a paracentric inversion of the distal half of chromosome 15 (Chr 15). Heterozygous Eh/+ mice display misshaped and hairy ears that have more and longer hair than the ears of their wild-type littermates. We mapped, cloned and sequenced both inversion breakpoints. No protein-coding transcript was disrupted by either breakpoint. The proximal breakpoint is located between syntrophin basic 1 (Sntb1) and hyaluronan synthase 2 (Has2), and the distal breakpoint maps between homeobox C4 (Hoxc4) and single-strand selective monofunctional uracil DNA glycosylase (Smug1), near the middle and the telomere ends of Chr 15, respectively. The inversion spans ~47 megabases. Our genetic analysis suggests that the hairy-ear phenotype is caused by the proximal breakpoint of the inversion-bearing Chr 15. Quantitative RNA analysis by real-time polymerase chain reaction for the genes flanking the breakpoint indicated no changes in expression levels except for some homeobox C (Hoxc) genes whose expression was elevated in developing and mature skin of the ears but not of other body regions. The increased hair length on the ears of Eh/+ mice was due to an extension of the anagen stage in the hair cycle, as determined by histological analysis. Our data indicate that the Eh phenotype arises from mis-expression of Hoxc genes.


Assuntos
Inversão Cromossômica/genética , Orelha/fisiologia , Regulação da Expressão Gênica/genética , Cabelo/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Animais , Mapeamento Cromossômico , Clonagem Molecular , Feminino , Genótipo , Cabelo/ultraestrutura , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Mutação
16.
BMC Dev Biol ; 8: 93, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18826643

RESUMO

BACKGROUND: The concept of specifying positional information in the adult cardiovascular system is largely unexplored. While the Hox transcriptional regulators have to be viewed as excellent candidates for assuming such a role, little is known about their presumptive cardiovascular control functions and in vivo expression patterns. RESULTS: We demonstrate that conventional reporter gene analysis in transgenic mice is a useful approach for defining highly complex Hox expression patterns in the adult vascular network as exemplified by our lacZ reporter gene models for Hoxa3 and Hoxc11. These mice revealed expression in subsets of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) located in distinct regions of the vasculature that roughly correspond to the embryonic expression domains of the two genes. These reporter gene patterns were validated as authentic indicators of endogenous gene expression by immunolabeling and PCR analysis. Furthermore, we show that persistent reporter gene expression in cultured cells derived from vessel explants facilitates in vitro characterization of phenotypic properties as exemplified by the differential response of Hoxc11-lacZ-positive versus-negative cells in migration assays and to serum. CONCLUSION: The data support a conceptual model of Hox-specified positional identities in adult blood vessels, which is of likely relevance for understanding the mechanisms underlying regional physiological diversities in the cardiovascular system. The data also demonstrate that conventional Hox reporter gene mice are useful tools for visualizing complex Hox expression patterns in the vascular network that might be unattainable otherwise. Finally, these mice are a resource for the isolation and phenotypic characterization of specific subpopulations of vascular cells marked by distinct Hox expression profiles.


Assuntos
Sistema Cardiovascular/metabolismo , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/genética , Miócitos de Músculo Liso/metabolismo , Sequência de Aminoácidos , Animais , Sistema Cardiovascular/citologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Humanos , Óperon Lac/genética , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Dados de Sequência Molecular , Ratos , Técnicas de Cultura de Tecidos , Transcrição Gênica/fisiologia
17.
J Biol Chem ; 281(39): 29245-55, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16835220

RESUMO

It is increasingly evident that the molecular mechanisms underlying hair follicle differentiation and cycling recapitulate principles of embryonic patterning and organ regeneration. Here we used Hoxc13-overexpressing transgenic mice (also known as GC13 mice), known to develop severe hair growth defects and alopecia, as a tool for defining pathways of hair follicle differentiation. Gene array analysis performed with RNA from postnatal skin revealed differential expression of distinct subsets of genes specific for cells of the three major hair shaft compartments (cuticle, cortex, and medulla) and their precursors. This finding correlates well with the structural defects observed in each of these compartments and implicates Hoxc13 in diverse pathways of hair follicle differentiation. The group of medulla-specific genes was particularly intriguing because this included the developmentally regulated transcription factor-encoding gene Foxq1 that is altered in the medulladefective satin mouse hair mutant. We provide evidence that Foxq1 is a downstream target for Hoxc13 based on DNA binding studies as well as co-transfection and chromatin immunoprecipitation assays. Expression of additional medulla-specific genes down-regulated upon overexpression of Hoxc13 requires functional Foxq1 as their expression is ablated in hair follicles of satin mice. Combined, these results demonstrate that Hoxc13 and Foxq1 control medulla differentiation through a common regulatory pathway. The apparent regulatory interactions between members of the mammalian Hox and Fox gene families shown here may establish a paradigm for "cross-talk" between these two conserved regulatory gene families in different developmental contexts including embryonic patterning as well as organ development and renewal.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/anatomia & histologia , Folículo Piloso/metabolismo , Proteínas de Homeodomínio/metabolismo , Mutação , Células 3T3 , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/ultraestrutura , Camundongos , Modelos Anatômicos , Modelos Genéticos , Hibridização de Ácido Nucleico
18.
J Investig Dermatol Symp Proc ; 10(3): 238-42, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16382673

RESUMO

Members of the Hox gene family of transcriptional regulators are believed to play essential roles in hair follicle differentiation, although little is known about the molecular mechanisms mediating these putative control functions. Transgenic mice overexpressing Hoxc13 in hair follicles (GC13 mice) exhibit complex phenotypic alterations including hair shaft defects and alopecia, as well as severe epidermal abnormalities. To identify some of the genetic pathways affected by Hoxc13 overexpression in hair, we performed large-scale differential gene expression analysis on the skin of 5-d GC13 versus normal FVB mice using DNA chip assays. A surprising result of these experiments was the identification of the epididymal cysteine-rich secretory protein 1 (Crisp1) gene as one of the genes with the greatest expression differential, in this case with greater than 20-fold downregulation in skin from GC13 mice. Crisp1 encodes a secreted protein that has originally been found to be abundantly expressed in the epididymis, where it plays a role in sperm maturation. We have localized Crisp1 mRNA in 5-d postnatal murine scapular skin by in situ hybridization, showing its expression to be restricted to the medulla of the hair shaft. Furthermore, we provide evidence for specific interaction of Hoxc13 with at least one cognate binding site found in the Crisp1 promoter region, thus supporting the concept of a Hoxc13/Crisp1 regulatory relationship. In summary, these data establish the hair as a novel site for Crisp1 expression where its functional role remains to be determined.


Assuntos
Proteínas Secretadas pelo Epidídimo/genética , Folículo Piloso/metabolismo , Proteínas de Homeodomínio/genética , Glicoproteínas de Membrana/genética , Animais , Regulação para Baixo , Eletroforese em Gel de Poliacrilamida , Ensaio de Desvio de Mobilidade Eletroforética , Epididimo/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas
19.
J Biol Chem ; 279(49): 51524-33, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15385554

RESUMO

Intermediate filament (IF) keratins and keratin-associated proteins (KAPs) are principal structural components of hair and encoded by members of multiple gene families. The severe hair growth defects observed upon aberrant expression of certain keratin and KAP genes in both mouse and man suggest that proper hair growth requires their spatio-temporally coordinated activation. An essential prerequisite for studying these cis-regulatory mechanisms is to define corresponding gene families, their genomic organization, and expression patterns. This work characterizes eight recently identified high glycine/tyrosine (HGT)-type KAP genes collectively designated Krtap16-n. These genes are shown to be integrated into a larger KAP gene domain on mouse chromosome 16 (MMU16) that is orthologous to a recently described HGT- and high sulfur (HS)-type KAP gene complex on human chromosome 21q22.11. All Krtap16 genes exhibit strong expression in a narrowly defined pattern restricted to the lower and middle cortical region of the hair shaft in both developing and cycling hair. During hair follicle regression (catagen), expression levels decrease until expression is no longer detectable in follicles at resting stage (telogen). Since isolation of the Krtap16 genes was based on their differential expression in transgenic mice overexpressing the Hoxc13 transcriptional regulator in hair, we examined whether bona fide Hoxc13 binding sites associated with these genes might be functionally relevant by performing electrophoretic mobility shift assays (EMSAs). The data provide evidence for sequence-specific interaction between Hoxc13 and Krtap16 genes, thus supporting the concept of a regulatory relationship between Hoxc13 and these KAP genes.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/genética , Regulação da Expressão Gênica , Cabelo/metabolismo , Proteínas de Homeodomínio/fisiologia , Queratinas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Northern Blotting , Mapeamento Cromossômico , Cromossomos Humanos Par 21 , Sequência Conservada , DNA/metabolismo , DNA Complementar/metabolismo , Humanos , Imuno-Histoquímica , Queratinas/metabolismo , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Oligonucleotídeos/química , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Fatores de Tempo
20.
Naturwissenschaften ; 90(5): 193-211, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12743702

RESUMO

The evolutionarily conserved Hox gene family of transcriptional regulators has originally been known for specifying positional identities along the longitudinal body axis of bilateral metazoans, including mouse and man. It is believed that subsequent to this archaic role, subsets of Hox genes have been co-opted for patterning functions in phylogenetically more recent structures, such as limbs and epithelial appendages. Among these, the hair follicle is of particular interest, as it is the only organ undergoing cyclical phases of regression and regeneration during the entire life span of an organism. Furthermore, the hair follicle is increasingly capturing the attention of developmental geneticists, as this abundantly available miniature organ mimics key aspects of embryonic patterning and, in addition, presents a model for studying organ renewal. The first Hox gene shown to play a universal role in hair follicle development is Hoxc13, as both Hoxc13-deficient and overexpressing mice exhibit severe hair growth and patterning defects. Differential gene expression analyses in the skin of these mutants, as well as in vitro DNA binding studies performed with potential targets for HOXC13 transcriptional regulation in human hair, identified genes encoding hair-specific keratins and keratin-associated proteins (KAPs) as major groups of presumptive Hoxc13 downstream effectors in the control of hair growth. The Hoxc13 mutant might thus serve as a paradigm for studying hair-specific roles of Hoxc13 and other members of this gene family, whose distinct spatio-temporally restricted expression patterns during hair development and cycling suggest discrete functions in follicular patterning and hair cycle control. The main conclusion from a discussion of these potential roles vis-à-vis current expression data in mouse and man, and from the perspective of the results obtained with the Hoxc13 transgenic models, is that members of the Hox family are likely to fulfill essential roles of great functional diversity in hair that require complex transcriptional control mechanisms to ensure proper spatio-temporal patterns of Hox gene expression at homeostatic levels.


Assuntos
Genes Homeobox , Cabelo/crescimento & desenvolvimento , Animais , Sequência Conservada , Desenvolvimento Embrionário e Fetal , Evolução Molecular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Morfogênese , Pele/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...