Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577036

RESUMO

Plant bioactive extracts represent a major resource for identifying drugs and adjuvant therapy for type 2 diabetes. To promote early screening of plants' antidiabetic potential, we designed a four in vitro tests strategy to anticipate in vivo bioactivity. Two antidiabetic plants were studied: Ocimum gratissimum L. (Oc) leaf extract and Musanga cecropoides R. Br. ex Tedlie (Mu) stem bark extract. Chemical compositions were analyzed by LCMS and HPLC. Antidiabetic properties were measured based on (1) INS-1 cells for insulin secretion, (2) L6 myoblast cells for insulin sensitization (Glut-4 translocation), (3) L6 myoblast cells for protection against hydrogen peroxide (H2O2) oxidative stress (cell mortality), and (4) liver microsomial fraction for glucose-6-phosphastase activity (G6P). Oc extract increased insulin secretion and insulin sensitivity, whereas it decreased oxidative stress-induced cell mortality and G6P activity. Mu extract decreased insulin secretion and had no effect on insulin sensitivity or G6P activity, but it increased oxidative stress-induced cell mortality. Results were compared with NCRAE, an antidiabetic plant extract used as reference, previously characterized and reported with increased insulin secretion and insulin sensitivity, protection against oxidative stress, and decreased G6P activity. The proposed set of four in vitro tests combined with chemical analysis provided insight into the interest in rapid early screening of plant extract antidiabetic potential to anticipate pharmaco-toxicological in vivo effects.


Assuntos
Ácidos Cafeicos , Hipoglicemiantes , Ocimum , Resistência à Insulina , Casca de Planta , Extratos Vegetais
2.
J Ethnopharmacol ; 215: 241-248, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29325917

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chicory (Cichorium intybus L.) is an indigenous vegetable widely cultivated in Europe, America and Asia. In ancient times, the leaves, flowers, seeds, and roots have been used as a wealth of health benefits including its tonic effects, the ability to ease digestive problems and to detoxify liver. In Indian traditional therapy, chicory was known to possess antidiabetic effect. In the traditional medicine of Bulgaria and Italy, chicory was used as hypoglycemic decoctions. AIMS OF THE STUDIES: We wanted to obtain the complete chemical composition of the natural chicoric acid extract (NCRAE), a chicory root extract rich in chicoric acid, which previously showed its glucose tolerance effect in normal rats. To investigate if the whole NCRAE is required to be effective, we performed a comparative in vivo experiment on STZ diabetic rats treated either with NCRAE or a mixture composed of the two major compounds of NCRAE. MATERIALS AND METHODS: LC-MS method has been used to analyze the exhaustive composition of NCRAE: we have determined that chicoric acid and chlorogenic acid represented 83.8% of NCRAE. So, we have prepared a solution mixture of chicoric acid and chlorogenic acid named SCCAM, in order to compare in vivo the antidiabetic effects of this last and NCRAE in streptozotocin diabetic rats. In vitro experiments were performed on L6 cell line both for glucose uptake and for the protective effect against H2O2 oxidative stress. Also, we have evaluated DPPH and ORAC (Oxygen Radical Absorbance Capacity) antioxidative capacities of the two compositions. RESULTS: The LC-MS analysis confirmed the high abundance of chicoric acid (64.2%) in NCRAE and a second part of NCRAE is composed of caffeoylquinic acids (CQAs) at 19.6% with among them the chlorogenic acid. This result has permitted us to prepare a mixture of synthetic L-chicoric acid (70%) and synthetic chlorogenic acid (30%): the solution is designated SCCAM. Our results showed that both NCRAE and SCCAM are able to improve a glucose tolerance in STZ diabetic rats after a subchronic administration of seven days. Alone NCRAE allows to significantly decrease the basal hyperglycemia after six days of treatment. To explain these difference of effects between NCRAE and SCCAM, we have compared their in vitro effects on the L6 muscle cell line both for the insulin sensitizing effect and for their protective action in pretreatment against H2O2. We have also compared their antioxidant capacities. In conclusion, we demonstrated that NCRAE, a natural extract of chicory (Cichorium intybus) rich in CRA and CQAs improves glucose tolerance and reduces the basal hyperglycemia in STZ diabetic rats.


Assuntos
Ácidos Cafeicos/farmacologia , Ácido Clorogênico/farmacologia , Cichorium intybus/química , Diabetes Mellitus Experimental/tratamento farmacológico , Resistência à Insulina , Extratos Vegetais/farmacologia , Succinatos/farmacologia , Animais , Antioxidantes , Ácidos Cafeicos/química , Ácido Clorogênico/química , Hipoglicemiantes/farmacologia , Insulina , Medicina Tradicional , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Succinatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA