Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7962, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042959

RESUMO

Klebsiella pneumoniae has been classified into two types, classical K. pneumoniae (cKP) and hypervirulent K. pneumoniae (hvKP). cKP isolates are highly diverse and important causes of nosocomial infections; they include globally disseminated antibiotic-resistant clones. hvKP isolates are sensitive to most antibiotics but are highly virulent, causing community-acquired infections in healthy individuals. The virulence phenotype of hvKP is associated with pathogenicity loci responsible for siderophore and hypermucoid capsule production. Recently, convergent strains of K. pneumoniae, which possess features of both cKP and hvKP, have emerged and are cause of much concern. Here, we screen the genomes of 2,608 multidrug-resistant K. pneumoniae isolates from the United States and identify 47 convergent isolates. We perform phenotypic and genomic characterization of 12 representative isolates. These 12 convergent isolates contain a variety of antimicrobial resistance plasmids and virulence plasmids. Most convergent isolates contain aerobactin biosynthesis genes and produce more siderophores than cKP isolates but not more capsule. Unexpectedly, only 1 of the 12 tested convergent isolates has a level of virulence consistent with hvKP isolates in a murine pneumonia model. These findings suggest that additional studies should be performed to clarify whether convergent strains are indeed more virulent than cKP in mouse and human infections.


Assuntos
Klebsiella pneumoniae , Fatores de Virulência , Humanos , Animais , Camundongos , Virulência/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia , Plasmídeos , Sideróforos
2.
mBio ; : e0212823, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877703

RESUMO

Gastrointestinal (GI) colonization by Klebsiella pneumoniae is a risk factor for subsequent infection as well as transmission to other patients. Additionally, colonization is achieved by many strain types that exhibit high diversity in genetic content. Thus, we aimed to study strain-specific requirements for K. pneumoniae GI colonization by applying transposon insertion sequencing to three classical clinical strains: a carbapenem-resistant strain, an extended-spectrum beta-lactamase-producing strain, and a non-epidemic antibiotic-susceptible strain. The transposon insertion libraries were screened in a murine model of GI colonization. At 3 days post-inoculation, 27 genes were required by all three strains for colonization. Isogenic deletion mutants for three genes/operons (acrA, carAB, and tatABCD) confirmed colonization defects in each of the three strains. Additionally, deletion of acrA reduced bile tolerance in vitro, while complementation restored both bile tolerance in vitro and colonization ability in vivo. Transposon insertion sequencing suggested that some genes were more important for the colonization of one strain than the others. For example, deletion of the sucrose porin-encoding gene scrY resulted in a colonization defect in the carbapenemase-producing strain but not in the extended-spectrum beta-lactamase producer or the antibiotic-susceptible strain. These findings demonstrate that classical K. pneumoniae strains use both shared and strain-specific strategies to colonize the mouse GI tract. IMPORTANCE Klebsiella pneumoniae is a common cause of difficult-to-treat infections due to its propensity to express resistance to many antibiotics. For example, carbapenem-resistant K. pneumoniae has been named an urgent threat by the United States Centers for Disease Control and Prevention. Gastrointestinal colonization in patients with K. pneumoniae has been linked to subsequent infection, making it a key process to control in the prevention of multidrug-resistant infections. However, the bacterial factors which contribute to K. pneumoniae colonization are not well understood. Additionally, individual strains exhibit large amounts of genetic diversity, begging the question of whether some colonization factors are strain dependent. This study identifies the enteric colonization factors of three classical strains using transposon mutant screens to define a core colonization program for K. pneumoniae as well as detecting strain-to-strain differences in colonization strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...