Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 100: 11-22, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948045

RESUMO

Two-dimensional transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, have recently emerged as nanomaterials with potential use in biomedicine. An attractive means to favor their interaction with biological media is the use of proper biomolecules as exfoliating/dispersing agents. Here, MoS2 flakes were stabilized with different small functional biomolecules such as adenosine monophosphate (AMP), guanosine monophosphate (GMP) and flavin mononucleotide (FMN) through the strong nucleotide-MoS2 interaction of Lewis acid-base type, rather than just on the weak dispersive and hydrophobic forces commonly associated with the use of many surfactants. The impact of the nucleotide-stabilized MoS2 flakes on the viability and cell proliferation, on the production of intracellular reactive oxygen species (ROS), and on the preosteoblast differentiation process (early stage) has been also evaluated, as well as the incorporation and intracellular localization of the nanomaterials by MC3T3-E1 and Saos-2 cells. The nucleotide-stabilized MoS2 flakes were found to exhibit excellent biocompatibility. Furthermore, their incorporation did not affect the integrity of the cell plasma membrane, which makes them ideal candidates for delivering drug/gene directly into cells. The in vitro cell response of tumor cells to these nanomaterials differs from that of undifferentiated cells, which provides the basis for their potential use in cancer therapy.


Assuntos
Monofosfato de Adenosina/química , Dissulfetos/química , Mononucleotídeo de Flavina/química , Guanosina Monofosfato/química , Molibdênio/química , Nanoestruturas/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Nanoestruturas/toxicidade , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Nanoscale ; 8(5): 2982-98, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26782137

RESUMO

Electrolytic--usually referred to as electrochemical--exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (i.e., almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes.

3.
ACS Appl Mater Interfaces ; 7(43): 24032-45, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26465228

RESUMO

The liquid-phase exfoliation of graphitic carbon nitride (g-C3N4) to afford colloidal dispersions of two-dimensional flakes constitutes an attractive route to facilitate the processing and implementation of this novel material toward different technological applications, but quantitative knowledge about its dispersibility in solvents is lacking. Here, we investigate the dispersion behavior of exfoliated g-C3N4 in a wide range of solvents and evaluate the obtained results on the basis of solvent surface energy and Hildebrand/Hansen solubility parameters. Estimates of the three Hansen parameters for exfoliated g-C3N4 from the experimentally derived data yielded δD ≈ 17.8 MPa(1/2), δP ≈ 10.8 MPa(1/2), and δH ≈ 15.4 MPa(1/2). The relatively high δH value suggested that, contrary to the case of other two-dimensional materials (e.g., graphene or transition metal dichalcogenides), hydrogen-bonding plays a substantial role in the efficient interaction, and thus dispersibility, of exfoliated g-C3N4 with solvents. Such an outcome was attributed to a high density of primary and/or secondary amines in the material, the presence of which was associated with incomplete condensation of the structure. Furthermore, cell proliferation tests carried out on thin films of exfoliated g-C3N4 using murine fibroblasts suggested that this material is highly biocompatible and noncytotoxic. Finally, the exfoliated g-C3N4 flakes were used as supports in the synthesis of Pd nanoparticles, and the resulting hybrids exhibited an exceptional catalytic activity in the reduction of nitroarenes.


Assuntos
Materiais Biocompatíveis/química , Coloides/química , Nitrilas/química , Animais , Calibragem , Catálise , Proliferação de Células , Sobrevivência Celular , Fibroblastos/metabolismo , Grafite/química , Ligação de Hidrogênio , Teste de Materiais , Nanopartículas Metálicas/química , Camundongos , Microscopia Eletrônica de Varredura , Nitrogênio/química , Paládio/química , Pós , Pressão , Solubilidade , Solventes/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
4.
ACS Appl Mater Interfaces ; 7(19): 10293-307, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25915172

RESUMO

The stable dispersion of graphene flakes in an aqueous medium is highly desirable for the development of materials based on this two-dimensional carbon structure, but current production protocols that make use of a number of surfactants typically suffer from limitations regarding graphene concentration or the amount of surfactant required to colloidally stabilize the sheets. Here, we demonstrate that an innocuous and readily available derivative of vitamin B2, namely the sodium salt of flavin mononucleotide (FMNS), is a highly efficient dispersant in the preparation of aqueous dispersions of defect-free, few-layer graphene flakes. Most notably, graphene concentrations in water as high as ∼50 mg mL(-1) using low amounts of FMNS (FMNS/graphene mass ratios of about 0.04) could be attained, which facilitated the formation of free-standing graphene films displaying high electrical conductivity (∼52000 S m(-1)) without the need of carrying out thermal annealing or other types of post-treatment. The excellent performance of FMNS as a graphene dispersant could be attributed to the combined effect of strong adsorption on the sheets through the isoalloxazine moiety of the molecule and efficient colloidal stabilization provided by its negatively charged phosphate group. The FMNS-stabilized graphene sheets could be decorated with nanoparticles of several noble metals (Ag, Pd, and Pt), and the resulting hybrids exhibited a high catalytic activity in the reduction of nitroarenes and electroreduction of oxygen. Overall, the present results should expedite the processing and implementation of graphene in, e.g., conductive inks, composites, and hybrid materials with practical utility in a wide range of applications.


Assuntos
Excipientes/química , Mononucleotídeo de Flavina/química , Grafite/química , Nanopartículas Metálicas/química , Nanoconjugados/química , Água/química , Catálise , Coloides/química , Nanopartículas Metálicas/ultraestrutura , Nanoconjugados/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA