Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
J Med Imaging (Bellingham) ; 11(3): 037502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38737491

RESUMO

Purpose: Immune checkpoint inhibitors (ICIs) are now one of the standards of care for patients with lung cancer and have greatly improved both progression-free and overall survival, although <20% of the patients respond to the treatment, and some face acute adverse events. Although a few predictive biomarkers have integrated the clinical workflow, they require additional modalities on top of whole-slide images and lack efficiency or robustness. In this work, we propose a biomarker of immunotherapy outcome derived solely from the analysis of histology slides. Approach: We develop a three-step framework, combining contrastive learning and nonparametric clustering to distinguish tissue patterns within the slides, before exploiting the adjacencies of previously defined regions to derive features and train a proportional hazards model for survival analysis. We test our approach on an in-house dataset of 193 patients from 5 medical centers and compare it with the gold standard tumor proportion score (TPS) biomarker. Results: On a fivefold cross-validation (CV) of the entire dataset, the whole-slide image-based survival analysis for patients treated with immunotherapy (WhARIO) features are able to separate a low- and a high-risk group of patients with a hazard ratio (HR) of 2.29 (CI95=1.48 to 3.56), whereas the TPS 1% reference threshold only reaches a HR of 1.81 (CI95=1.21 to 2.69). Combining the two yields a higher HR of 2.60 (CI95=1.72 to 3.94). Additional experiments on the same dataset, where one out of five centers is excluded from the CV and used as a test set, confirm these trends. Conclusions: Our uniquely designed WhARIO features are an efficient predictor of survival for lung cancer patients who received ICI treatment. We achieve similar performance to the current gold standard biomarker, without the need to access other imaging modalities, and show that both can be used together to reach even better results.

2.
Diagn Interv Imaging ; 105(2): 65-73, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822196

RESUMO

PURPOSE: The purpose of this study was to investigate the relationship between inter-reader variability in manual prostate contour segmentation on magnetic resonance imaging (MRI) examinations and determine the optimal number of readers required to establish a reliable reference standard. MATERIALS AND METHODS: Seven radiologists with various experiences independently performed manual segmentation of the prostate contour (whole-gland [WG] and transition zone [TZ]) on 40 prostate MRI examinations obtained in 40 patients. Inter-reader variability in prostate contour delineations was estimated using standard metrics (Dice similarity coefficient [DSC], Hausdorff distance and volume-based metrics). The impact of the number of readers (from two to seven) on segmentation variability was assessed using pairwise metrics (consistency) and metrics with respect to a reference segmentation (conformity), obtained either with majority voting or simultaneous truth and performance level estimation (STAPLE) algorithm. RESULTS: The average segmentation DSC for two readers in pairwise comparison was 0.919 for WG and 0.876 for TZ. Variability decreased with the number of readers: the interquartile ranges of the DSC were 0.076 (WG) / 0.021 (TZ) for configurations with two readers, 0.005 (WG) / 0.012 (TZ) for configurations with three readers, and 0.002 (WG) / 0.0037 (TZ) for configurations with six readers. The interquartile range decreased slightly faster between two and three readers than between three and six readers. When using consensus methods, variability often reached its minimum with three readers (with STAPLE, DSC = 0.96 [range: 0.945-0.971] for WG and DSC = 0.94 [range: 0.912-0.957] for TZ, and interquartile range was minimal for configurations with three readers. CONCLUSION: The number of readers affects the inter-reader variability, in terms of inter-reader consistency and conformity to a reference. Variability is minimal for three readers, or three readers represent a tipping point in the variability evolution, with both pairwise-based metrics or metrics with respect to a reference. Accordingly, three readers may represent an optimal number to determine references for artificial intelligence applications.


Assuntos
Inteligência Artificial , Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Variações Dependentes do Observador , Imageamento por Ressonância Magnética/métodos , Algoritmos
3.
Front Digit Health ; 5: 1283726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144260

RESUMO

This paper compares three finite element-based methods used in a physics-based non-rigid registration approach and reports on the progress made over the last 15 years. Large brain shifts caused by brain tumor removal affect registration accuracy by creating point and element outliers. A combination of approximation- and geometry-based point and element outlier rejection improves the rigid registration error by 2.5 mm and meets the real-time constraints (4 min). In addition, the paper raises several questions and presents two open problems for the robust estimation and improvement of registration error in the presence of outliers due to sparse, noisy, and incomplete data. It concludes with preliminary results on leveraging Quantum Computing, a promising new technology for computationally intensive problems like Feature Detection and Block Matching in addition to finite element solver; all three account for 75% of computing time in deformable registration.

4.
ArXiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37731651

RESUMO

Current neurosurgical procedures utilize medical images of various modalities to enable the precise location of tumors and critical brain structures to plan accurate brain tumor resection. The difficulty of using preoperative images during the surgery is caused by the intra-operative deformation of the brain tissue (brain shift), which introduces discrepancies concerning the preoperative configuration. Intra-operative imaging allows tracking such deformations but cannot fully substitute for the quality of the pre-operative data. Dynamic Data Driven Deformable Non-Rigid Registration (D4NRR) is a complex and time-consuming image processing operation that allows the dynamic adjustment of the pre-operative image data to account for intra-operative brain shift during the surgery. This paper summarizes the computational aspects of a specific adaptive numerical approximation method and its variations for registering brain MRIs. It outlines its evolution over the last 15 years and identifies new directions for the computational aspects of the technique.

6.
J Med Imaging (Bellingham) ; 10(3): 034502, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37216152

RESUMO

Purpose: The purpose of this study is to examine the utilization of unlabeled data for abdominal organ classification in multi-label (non-mutually exclusive classes) ultrasound images, as an alternative to the conventional transfer learning approach. Approach: We present a new method for classifying abdominal organs in ultrasound images. Unlike previous approaches that only relied on labeled data, we consider the use of both labeled and unlabeled data. To explore this approach, we first examine the application of deep clustering for pretraining a classification model. We then compare two training methods, fine-tuning with labeled data through supervised learning and fine-tuning with both labeled and unlabeled data using semisupervised learning. All experiments were conducted on a large dataset of unlabeled images (nu=84967) and a small set of labeled images (ns=2742) comprising progressively 10%, 20%, 50%, and 100% of the images. Results: We show that for supervised fine-tuning, deep clustering is an effective pre-training method, with performance matching that of ImageNet pre-training using five times less labeled data. For semi-supervised learning, deep clustering pre-training also yields higher performance when the amount of labeled data is limited. Best performance is obtained with deep clustering pre-training combined with semi-supervised learning and 2742 labeled example images with an F1-score weighted average of 84.1%. Conclusions: This method can be used as a tool to preprocess large unprocessed databases, thus reducing the need for prior annotations of abdominal ultrasound studies for the training of image classification algorithms, which in turn could improve the clinical use of ultrasound images.

7.
Med Image Anal ; 85: 102763, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764037

RESUMO

Given the size of digitized Whole Slide Images (WSIs), it is generally laborious and time-consuming for pathologists to exhaustively delineate objects within them, especially with datasets containing hundreds of slides to annotate. Most of the time, only slide-level labels are available, giving rise to the development of weakly-supervised models. However, it is often difficult to obtain from such models accurate object localization, e.g., patches with tumor cells in a tumor detection task, as they are mainly designed for slide-level classification. Using the attention-based deep Multiple Instance Learning (MIL) model as our base weakly-supervised model, we propose to use mixed supervision - i.e., the use of both slide-level and patch-level labels - to improve both the classification and the localization performances of the original model, using only a limited amount of patch-level labeled slides. In addition, we propose an attention loss term to regularize the attention between key instances, and a paired batch method to create balanced batches for the model. First, we show that the changes made to the model already improve its performance and interpretability in the weakly-supervised setting. Furthermore, when using only between 12 and 62% of the total available patch-level annotations, we can reach performance close to fully-supervised models on the tumor classification datasets DigestPath2019 and Camelyon16.


Assuntos
Bivalves , Neoplasias , Humanos , Animais , Compostos Radiofarmacêuticos
8.
Insights Imaging ; 13(1): 202, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543901

RESUMO

OBJECTIVES: Accurate zonal segmentation of prostate boundaries on MRI is a critical prerequisite for automated prostate cancer detection based on PI-RADS. Many articles have been published describing deep learning methods offering great promise for fast and accurate segmentation of prostate zonal anatomy. The objective of this review was to provide a detailed analysis and comparison of applicability and efficiency of the published methods for automatic segmentation of prostate zonal anatomy by systematically reviewing the current literature. METHODS: A Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) was conducted until June 30, 2021, using PubMed, ScienceDirect, Web of Science and EMBase databases. Risk of bias and applicability based on Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria adjusted with Checklist for Artificial Intelligence in Medical Imaging (CLAIM) were assessed. RESULTS: A total of 458 articles were identified, and 33 were included and reviewed. Only 2 articles had a low risk of bias for all four QUADAS-2 domains. In the remaining, insufficient details about database constitution and segmentation protocol provided sources of bias (inclusion criteria, MRI acquisition, ground truth). Eighteen different types of terminology for prostate zone segmentation were found, while 4 anatomic zones are described on MRI. Only 2 authors used a blinded reading, and 4 assessed inter-observer variability. CONCLUSIONS: Our review identified numerous methodological flaws and underlined biases precluding us from performing quantitative analysis for this review. This implies low robustness and low applicability in clinical practice of the evaluated methods. Actually, there is not yet consensus on quality criteria for database constitution and zonal segmentation methodology.

9.
Front Neurosci ; 16: 1004050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408404

RESUMO

Detecting new lesions is a key aspect of the radiological follow-up of patients with Multiple Sclerosis (MS), leading to eventual changes in their therapeutics. This paper presents our contribution to the MSSEG-2 MICCAI 2021 challenge. The challenge is focused on the segmentation of new MS lesions using two consecutive Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). In other words, considering longitudinal data composed of two time points as input, the aim is to segment the lesional areas, which are present only in the follow-up scan and not in the baseline. The backbone of our segmentation method is a 3D UNet applied patch-wise to the images, and in which, to take into account both time points, we simply concatenate the baseline and follow-up images along the channel axis before passing them to the 3D UNet. Our key methodological contribution is the use of online hard example mining to address the challenge of class imbalance. Indeed, there are very few voxels belonging to new lesions which makes training deep-learning models difficult. Instead of using handcrafted priors like brain masks or multi-stage methods, we experiment with a novel modification to online hard example mining (OHEM), where we use an exponential moving average (i.e., its weights are updated with momentum) of the 3D UNet to mine hard examples. Using a moving average instead of the raw model should allow smoothing of its predictions and allow it to give more consistent feedback for OHEM.

11.
Radiol Artif Intell ; 4(3): e210110, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35652113

RESUMO

Purpose: To train and assess the performance of a deep learning-based network designed to detect, localize, and characterize focal liver lesions (FLLs) in the liver parenchyma on abdominal US images. Materials and Methods: In this retrospective, multicenter, institutional review board-approved study, two object detectors, Faster region-based convolutional neural network (Faster R-CNN) and Detection Transformer (DETR), were fine-tuned on a dataset of 1026 patients (n = 2551 B-mode abdominal US images obtained between 2014 and 2018). Performance of the networks was analyzed on a test set of 48 additional patients (n = 155 B-mode abdominal US images obtained in 2019) and compared with the performance of three caregivers (one nonexpert and two experts) blinded to the clinical history. The sign test was used to compare accuracy, specificity, sensitivity, and positive predictive value among all raters. Results: DETR achieved a specificity of 90% (95% CI: 75, 100) and a sensitivity of 97% (95% CI: 97, 97) for the detection of FLLs. The performance of DETR met or exceeded that of the three caregivers for this task. DETR correctly localized 80% of the lesions, and it achieved a specificity of 81% (95% CI: 67, 91) and a sensitivity of 82% (95% CI: 62, 100) for FLL characterization (benign vs malignant) among lesions localized by all raters. The performance of DETR met or exceeded that of two experts and Faster R-CNN for these tasks. Conclusion: DETR demonstrated high specificity for detection, localization, and characterization of FLLs on abdominal US images. Supplemental material is available for this article. RSNA, 2022Keywords: Computer-aided Diagnosis (CAD), Ultrasound, Abdomen/GI, Liver, Tissue Characterization, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN).

12.
Cancers (Basel) ; 14(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406511

RESUMO

The histological distinction of lung neuroendocrine carcinoma, including small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC) and atypical carcinoid (AC), can be challenging in some cases, while bearing prognostic and therapeutic significance. To assist pathologists with the differentiation of histologic subtyping, we applied a deep learning classifier equipped with a convolutional neural network (CNN) to recognize lung neuroendocrine neoplasms. Slides of primary lung SCLC, LCNEC and AC were obtained from the Laboratory of Clinical and Experimental Pathology (University Hospital Nice, France). Three thoracic pathologists blindly established gold standard diagnoses. The HALO-AI module (Indica Labs, UK) trained with 18,752 image tiles extracted from 60 slides (SCLC = 20, LCNEC = 20, AC = 20 cases) was then tested on 90 slides (SCLC = 26, LCNEC = 22, AC = 13 and combined SCLC with LCNEC = 4 cases; NSCLC = 25 cases) by F1-score and accuracy. A HALO-AI correct area distribution (AD) cutoff of 50% or more was required to credit the CNN with the correct diagnosis. The tumor maps were false colored and displayed side by side to original hematoxylin and eosin slides with superimposed pathologist annotations. The trained HALO-AI yielded a mean F1-score of 0.99 (95% CI, 0.939-0.999) on the testing set. Our CNN model, providing further larger validation, has the potential to work side by side with the pathologist to accurately differentiate between the different lung neuroendocrine carcinoma in challenging cases.

14.
Neurobiol Aging ; 113: 73-83, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35320737

RESUMO

SimulAD is a computational disease progression model (DPM) originally developed on the ADNI database to simulate the evolution of clinical and imaging markers characteristic of AD, and to quantify the disease severity (DS) of a subject. In this work, we assessed the validity of this estimated DS, as well as the generalization of the DPM., by applying SimulAD on a new cohort from the Geneva Memory Center (GMC). The differences between the estimated DS of healthy, mild cognitive impairment and AD dementia groups were statistically significant (p-values < 0.05; d ≥ 0.8). DS correlated with MMSE (ρ = -0.55), hippocampal atrophy (ρ = -0.62), glucose hypometabolism (ρ = -0.67), amyloid burden (ρ = 0.31) and tau deposition (ρ = 0.62) (p-values < 0.01). Based on the dynamics estimated on the ADNI cohort, we simulated a DPM for the subjects of the GMC cohort. The difference between the temporal evolution of similar biomarkers simulated on the ADNI and GMC cohorts remained below 10%. This study illustrates the robustness and good generalization of SimulAD, highlighting its potential for clinical and pharmaceutical studies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Atrofia , Biomarcadores , Progressão da Doença , Humanos , Proteínas tau
15.
J Med Imaging (Bellingham) ; 9(2): 024001, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35300345

RESUMO

Purpose: An accurate zonal segmentation of the prostate is required for prostate cancer (PCa) management with MRI. Approach: The aim of this work is to present UFNet, a deep learning-based method for automatic zonal segmentation of the prostate from T2-weighted (T2w) MRI. It takes into account the image anisotropy, includes both spatial and channelwise attention mechanisms and uses loss functions to enforce prostate partition. The method was applied on a private multicentric three-dimensional T2w MRI dataset and on the public two-dimensional T2w MRI dataset ProstateX. To assess the model performance, the structures segmented by the algorithm on the private dataset were compared with those obtained by seven radiologists of various experience levels. Results: On the private dataset, we obtained a Dice score (DSC) of 93.90 ± 2.85 for the whole gland (WG), 91.00 ± 4.34 for the transition zone (TZ), and 79.08 ± 7.08 for the peripheral zone (PZ). Results were significantly better than other compared networks' ( p - value < 0.05 ). On ProstateX, we obtained a DSC of 90.90 ± 2.94 for WG, 86.84 ± 4.33 for TZ, and 78.40 ± 7.31 for PZ. These results are similar to state-of-the art results and, on the private dataset, are coherent with those obtained by radiologists. Zonal locations and sectorial positions of lesions annotated by radiologists were also preserved. Conclusions: Deep learning-based methods can provide an accurate zonal segmentation of the prostate leading to a consistent zonal location and sectorial position of lesions, and therefore can be used as a helping tool for PCa diagnosis.

16.
Eur Radiol ; 32(7): 4931-4941, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35169895

RESUMO

OBJECTIVE: A reliable estimation of prostate volume (PV) is essential to prostate cancer management. The objective of our multi-rater study was to compare intra- and inter-rater variability of PV from manual planimetry and ellipsoid formulas. METHODS: Forty treatment-naive patients who underwent prostate MRI were selected from a local database. PV and corresponding PSA density (PSAd) were estimated on 3D T2-weighted MRI (3 T) by 7 independent radiologists using the traditional ellipsoid formula (TEF), the newer biproximate ellipsoid formula (BPEF), and the manual planimetry method (MPM) used as ground truth. Intra- and inter-rater variability was calculated using the mixed model-based intraclass correlation coefficient (ICC). RESULTS: Mean volumes were 67.00 (± 36.61), 66.07 (± 35.03), and 64.77 (± 38.27) cm3 with the TEF, BPEF, and MPM methods, respectively. Both TEF and BPEF overestimated PV relative to MPM, with the former presenting significant differences (+ 1.91 cm3, IQ = [- 0.33 cm3, 5.07 cm3], p val = 0.03). Both intra- (ICC > 0.90) and inter-rater (ICC > 0.90) reproducibility were excellent. MPM had the highest inter-rater reproducibility (ICC = 0.999). Inter-rater PV variation led to discrepancies in classification according to the clinical criterion of PSAd > 0.15 ng/mL for 2 patients (5%), 7 patients (17.5%), and 9 patients (22.5%) when using MPM, TEF, and BPEF, respectively. CONCLUSION: PV measurements using ellipsoid formulas and MPM are highly reproducible. MPM is a robust method for PV assessment and PSAd calculation, with the lowest variability. TEF showed a high degree of concordance with MPM but a slight overestimation of PV. Precise anatomic landmarks as defined with the BPEF led to a more accurate PV estimation, but also to a higher variability. KEY POINTS: • Manual planimetry used for prostate volume estimation is robust and reproducible, with the lowest variability between readers. • Ellipsoid formulas are accurate and reproducible but with higher variability between readers. • The traditional ellipsoid formula tends to overestimate prostate volume.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
17.
Med Image Anal ; 73: 102193, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371440

RESUMO

Deep reinforcement learning (DRL) augments the reinforcement learning framework, which learns a sequence of actions that maximizes the expected reward, with the representative power of deep neural networks. Recent works have demonstrated the great potential of DRL in medicine and healthcare. This paper presents a literature review of DRL in medical imaging. We start with a comprehensive tutorial of DRL, including the latest model-free and model-based algorithms. We then cover existing DRL applications for medical imaging, which are roughly divided into three main categories: (i) parametric medical image analysis tasks including landmark detection, object/lesion detection, registration, and view plane localization; (ii) solving optimization tasks including hyperparameter tuning, selecting augmentation strategies, and neural architecture search; and (iii) miscellaneous applications including surgical gesture segmentation, personalized mobile health intervention, and computational model personalization. The paper concludes with discussions of future perspectives.


Assuntos
Algoritmos , Redes Neurais de Computação , Diagnóstico por Imagem , Previsões , Humanos , Aprendizagem
18.
Brain Commun ; 3(2): fcab091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085040

RESUMO

In this study, we investigate SimulAD, a novel quantitative instrument for the development of intervention strategies for disease-modifying drugs in Alzheimer's disease. SimulAD is based on the modeling of the spatio-temporal dynamics governing the joint evolution of imaging and clinical biomarkers along the history of the disease, and allows the simulation of the effect of intervention time and drug dosage on the biomarkers' progression. When applied to multi-modal imaging and clinical data from the Alzheimer's Disease Neuroimaging Initiative the method enables to generate hypothetical scenarios of amyloid lowering interventions. The results quantify the crucial role of intervention time, and provide a theoretical justification for testing amyloid modifying drugs in the pre-clinical stage. Our experimental simulations are compatible with the outcomes observed in past clinical trials, and suggest that anti-amyloid treatments should be administered at least 7 years earlier than what is currently being done in order to obtain statistically powered improvement of clinical endpoints.

19.
Insights Imaging ; 12(1): 71, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34089410

RESUMO

BACKGROUND: Accurate prostate zonal segmentation on magnetic resonance images (MRI) is a critical prerequisite for automated prostate cancer detection. We aimed to assess the variability of manual prostate zonal segmentation by radiologists on T2-weighted (T2W) images, and to study factors that may influence it. METHODS: Seven radiologists of varying levels of experience segmented the whole prostate gland (WG) and the transition zone (TZ) on 40 axial T2W prostate MRI images (3D T2W images for all patients, and both 3D and 2D images for a subgroup of 12 patients). Segmentation variabilities were evaluated based on: anatomical and morphological variation of the prostate (volume, retro-urethral lobe, intensity contrast between zones, presence of a PI-RADS ≥ 3 lesion), variation in image acquisition (3D vs 2D T2W images), and reader's experience. Several metrics including Dice Score (DSC) and Hausdorff Distance were used to evaluate differences, with both a pairwise and a consensus (STAPLE reference) comparison. RESULTS: DSC was 0.92 (± 0.02) and 0.94 (± 0.03) for WG, 0.88 (± 0.05) and 0.91 (± 0.05) for TZ respectively with pairwise comparison and consensus reference. Variability was significantly (p < 0.05) lower for the mid-gland (DSC 0.95 (± 0.02)), higher for the apex (0.90 (± 0.06)) and the base (0.87 (± 0.06)), and higher for smaller prostates (p < 0.001) and when contrast between zones was low (p < 0.05). Impact of the other studied factors was non-significant. CONCLUSIONS: Variability is higher in the extreme parts of the gland, is influenced by changes in prostate morphology (volume, zone intensity ratio), and is relatively unaffected by the radiologist's level of expertise.

20.
Nat Rev Cardiol ; 18(8): 600-609, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33712806

RESUMO

Research into artificial intelligence (AI) has made tremendous progress over the past decade. In particular, the AI-powered analysis of images and signals has reached human-level performance in many applications owing to the efficiency of modern machine learning methods, in particular deep learning using convolutional neural networks. Research into the application of AI to medical imaging is now very active, especially in the field of cardiovascular imaging because of the challenges associated with acquiring and analysing images of this dynamic organ. In this Review, we discuss the clinical questions in cardiovascular imaging that AI can be used to address and the principal methodological AI approaches that have been developed to solve the related image analysis problems. Some approaches are purely data-driven and rely mainly on statistical associations, whereas others integrate anatomical and physiological information through additional statistical, geometric and biophysical models of the human heart. In a structured manner, we provide representative examples of each of these approaches, with particular attention to the underlying computational imaging challenges. Finally, we discuss the remaining limitations of AI approaches in cardiovascular imaging (such as generalizability and explainability) and how they can be overcome.


Assuntos
Inteligência Artificial , Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...