Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 275: 127449, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454427

RESUMO

Probiotics are viable microorganisms that provide beneficial health effects when consumed in adequate quantity by the host. Immunomodulation is one of the major beneficial effects of probiotics that is a result of the colonization of probiotic microorganisms in the gut, their interaction with the intestinal cells, production of various metabolites and by-products. The last few years have displayed an increasing number of studies on non-viable probiotics (paraprobiotics) and microbial by-products (postbiotics) that prove beneficial to human health by providing positive immune responses even in the inactivated form. The increasing number of research studies compare the effects of viable and non-viable probiotics, their by-products, and metabolites. This review focuses on the ability of different types of paraprobiotics and postbiotics to modulate the immune system. A majority of paraprobiotics are developed from Lactobacillus and Bifidobacterium strains. The postbiotic components that modulate the biological reactions include lipoteichoic acids, bacteriocins, short-chain fatty acids, peptidoglycan, and exopolysaccharides have been reported. We have reviewed paraprobiotics and postbiotics that are commercial as well as in research. Paraprobiotics and postbiotics can be a possible replacement for live probiotics for immunocompromised people. Paraprobiotics display an active role in maintaining T-cell mediated immunity and have been shown to treat colitis. Postbiotic components exhibit properties of pro and anti-immune, anti-tumor, anti-microbial, antioxidant, and anti-biofilm. More research is required on the efficient conversion of probiotics to paraprobiotics, the isolation and purification of different postbiotics, and stability studies during the shelf life. The majority of the articles report the effects of direct ingestion of different '-biotics' without blending in any food product.

2.
Biotechnol Rep (Amst) ; 32: e00670, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34824995

RESUMO

The synthesis of complex molecules using multiple enzymes simultaneously in one reaction vessel has rapidly emerged as a new frontier in the field of bioprocess technology. However, operating different enzymes together in a single vessel limits their operational performance which needs to be addressed. With this respect, scaffolding proteins play an immense role in bringing different enzymes together in a specific manner. The scaffolding improves the catalytic performance, enzyme stability and provides an optimal micro-environment for biochemical reactions. This review describes the components of protein scaffolds, different ways of constructing a protein scaffold-based multi-enzyme complex, and their effects on enzyme kinetics. Moreover, different conjugation strategies viz; dockerin-cohesin interaction, SpyTag-SpyCatcher system, peptide linker-based ligation, affibody, and sortase-mediated ligation are discussed in detail. Various analytical and characterization tools that have enabled the development of these scaffolding strategies are also reviewed. Such mega-enzyme complexes promise wider applications in the field of biotechnology and bioengineering.

3.
Small ; 14(26): e1800729, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29855136

RESUMO

A proof-of-concept for the fabrication of genetically customizable biogenic materials for photovoltaic applications is presented. E. coli is first genetically engineered to heterologously express the carotenoid biosynthetic pathway from plants. This modification yields a strain that overproduces the photoactive pigment lycopene. The pigment-producing cells are then coated with TiO2 nanoparticles via a tryptophan-mediated supramolecular interface, and subsequent incorporation of the resulting biogenic material (cells@TiO2 ) as an anode in an I- /I3- -based dye-sensitized solar cell yields an excellent photovoltaic (PV) response. This work lays strong foundations for the development of bio-PV materials and next-generation organic optoelectronics that are green, inexpensive, and easy to manufacture.


Assuntos
Materiais Biocompatíveis/química , Energia Solar , Eletroquímica , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Licopeno/análise , Titânio/farmacologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA