Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747548

RESUMO

The efficient conversion of solar energy to chemical energy represents a critical bottleneck to the energy transition. Photocatalytic splitting of water to generate solar fuels is a promising solution. Semiconductor quantum dots (QDs) are prime candidates for light-harvesting components of photocatalytic heterostructures, given their size-dependent photophysical properties and band-edge energies. A promising series of heterostructured photocatalysts interface QDs with transition-metal oxides which embed midgap electronic states derived from the stereochemically active electron lone pairs of p-block cations. Here, we examine the thermodynamic driving forces and dynamics of charge separation in Sb2VO5/CdSe QD heterostructures, wherein a high density of Sb 5s2-derived midgap states are prospective acceptors for photogenerated holes. Hard-x-ray valence band photoemission spectroscopy measurements of Sb2VO5/CdSe QD heterostructures were used to deduce thermodynamic driving forces for charge separation. Interfacial charge transfer dynamics in the heterostructures were examined as a function of the mode of interfacial connectivity, contrasting heterostructures with direct interfaces assembled by successive ion layer adsorption and reaction (SILAR) and interfaces comprising molecular bridges assembled by linker-assisted assembly (LAA). Transient absorption spectroscopy measurements indicate ultrafast (<2 ps) electron and hole transfer in SILAR-derived heterostructures, whereas LAA-derived heterostructures show orders of magnitude differentials in the kinetics of hole (<100 ps) and electron (∼1 ns) transfer. The interface-modulated kinetic differentials in electron and hole transfer rates underpin the more effective charge separation, reduced charge recombination, and greater photocatalytic efficiency observed for the LAA-derived Sb2VO5/CdSe QD heterostructures.

2.
Inorg Chem ; 62(32): 12965-12975, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37531196

RESUMO

Stereoactive electron lone pairs derived from filled 5/6s2 states of p-block cations are an intriguing electronic and geometric structure motif that have been exploited for diverse applications such as thermoelectrics, thermochromics, photocatalysis, and nonlinear optics. Layered trivanadates are dynamic intercalation hosts, where the insertion of cations can be used to tune electron correlation, charge localization, and magnetic ordering. However, the interaction of 5/6s2 stereoactive electron lone pairs with layered trivanadates remains unexplored. In this study, we contrast s- and p-block trivanadates and map off-centering in the coordination environment and reduction in symmetry arising from the stereochemical activity of lone pair cations to the emergence of filled antibonding lone-pair 6s2-O 2p hybridized states. The former is studied by high-resolution single-crystal X-ray diffraction studies of TlV3O8 and isostructural RbV3O8 to probe distinct differences in Tl and Rb coordination environments and the resulting modulation of V-V interactions in V3O8 slabs. The latter has been probed by variable-energy hard X-ray photoelectron spectroscopy (HAXPES) measurements, which manifest orbital-specific contributions from bonding and antibonding interactions of stereoactive Tl 6s2 electron lone pairs in TlV3O8. The spectroscopic assignment of valence band states to stereoactive lone pairs is further corroborated by first-principles electronic structure calculations, crystal orbital Hamilton population analyses, and electron localization function maps. The presence of the Tl 6s2 electron lone pair in TlV3O8 brings about the off-centering of Tl+ cations, which leads to anisotropy in Tl-O bonds. The off-centering of Tl ions weakens V-O bonds in one direction, which subsequently strengthens directional V-V coupling. Magnetic measurements reveal ferromagnetic signatures for both RbV3O8 and TlV3O8. However, the differences in V···V interactions significantly affect the energy balance of the superexchange interactions, resulting in an ordering temperature of 140 K for TlV3O8 as compared to 125 K for RbV3O8. The results demonstrate the distinctive effects of stereochemically active lone pairs in modifying electronic structure near the Fermi level and for mediating superexchange interactions.

3.
ACS Appl Mater Interfaces ; 15(33): 39966-39979, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37561966

RESUMO

We used linker-assisted assembly (LAA) to tether CdS quantum dots (QDs) to MoS2 nanosheets via L-cysteine (cys) or mercaptoalkanoic acids (MAAs) of varying lengths, yielding ligand-bridged CdS/MoS2 heterostructures for redox photocatalysis. LAA afforded precise control over the light-harvesting properties of QDs within heterostructures. Photoexcited CdS QDs transferred electrons to molecularly linked MoS2 nanosheets from both band-edge and trap states; the electron-transfer dynamics was tunable with the properties of bridging ligands. Rate constants of electron transfer, estimated from time-correlated single photon counting (TCSPC) measurements, ranged from (9.8 ± 3.8) × 106 s-1 for the extraction of electrons from trap states within heterostructures incorporating the longest MAAs to >5 × 109 s-1 for the extraction of electrons from band-edge or trap states in heterostructures with cys or 3-mercaptopropionic acid (3MPA) linkers. Ultrafast transient absorption measurements revealed that electrons were transferred within 0.5-2 ps or less for CdS-cys-MoS2 and CdS-3MPA-MoS2 heterostructures, corresponding to rate constants ≥5 × 109 s-1. Photoinduced CdS-to-MoS2 electron transfer could be exploited in photocatalytic hydrogen evolution reaction (HER) via the reduction of H+ to H2 in concert with the oxidation of lactic acid. CdS-L-MoS2-functionalized FTO electrodes promoted HER under oxidative conditions wherein H2 was evolved at a Pt counter electrode with Faradaic efficiencies of 90% or higher and under reductive conditions wherein H2 was evolved at the CdS-L-MoS2-heterostructure-functionalized working electrode with Faradaic efficiencies of 25-40%. Dispersed CdS-L-MoS2 heterostructures promoted photocatalytic HER (15.1 µmol h-1) under white-light illumination, whereas free cys-capped CdS QDs produced threefold less H2 and unfunctionalized MoS2 nanosheets produced no measurable H2. Charge separation across the CdS/MoS2 interface is thus pivotal for redox photocatalysis. Our results reveal that LAA affords tunability of the properties of constituent CdS QDs and MoS2 nanosheets and precise, programmable, ligand-dependent control over the assembly, interfacial structure, charge-transfer dynamics, and photocatalytic reactivity of CdS-L-MoS2 heterostructures.

4.
ACS Omega ; 8(5): 4430-4435, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777591

RESUMO

Despite the existence of a substantial amount of climate-related scientific data, misconceptions about climate change are still prevalent within public opinion. Dissemination of misinformation to the public through subjective media sources is a major challenge that climate scientists face. Implementation of climate policy is crucial for mitigation and adaptation measures required to curtail anthropogenic rooted climate change. This paper will discuss student perspectives on the 2022 United Nations climate summit in Egypt (COP27) related to climate literacy and public opinion as the driving forces behind the enactment and execution of important climate-based policy.

5.
ACS Eng Au ; 2(6): 477-485, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36573177

RESUMO

The energy required to heat, cool, and illuminate buildings continues to increase with growing urbanization, engendering a substantial global carbon footprint for the built environment. Passive modulation of the solar heat gain of buildings through the design of spectrally selective thermochromic fenestration elements holds promise for substantially alleviating energy consumed for climate control and lighting. The binary vanadium(IV) oxide VO2 manifests a robust metal-insulator transition that brings about a pronounced modulation of its near-infrared transmittance in response to thermal activation. As such, VO2 nanocrystals are potentially useful as the active elements of transparent thermochromic films and coatings. Practical applications in retrofitting existing buildings requires the design of workflows to embed thermochromic fillers within industrially viable resins. Here, we describe the dispersion of VO2 nanocrystals within a polyvinyl butyral laminate commonly used in the laminated glass industry as a result of its high optical clarity, toughness, ductility, and strong adhesion to glass. To form high-optical-clarity nanocomposite films, VO2 nanocrystals are encased in a silica shell and functionalized with 3-methacryloxypropyltrimethoxysilane, enabling excellent dispersion of the nanocrystals in PVB through the formation of siloxane linkages and miscibility of the methacrylate group with the random copolymer. Encapsulation, functionalization, and dispersion of the core-shell VO2@SiO2 nanocrystals mitigates both Mie scattering and light scattering from refractive index discontinuities. The nanocomposite laminates exhibit a 22.3% modulation of NIR transmittance with the functionalizing moiety engendering a 77% increase of visible light transmittance as compared to unfunctionalized core-shell particles. The functionalization scheme and workflow demonstrated, here, illustrates a viable approach for integrating thermochromic functionality within laminated glass used for retrofitting buildings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA