Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New J Phys ; 21(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32855619

RESUMO

Physical systems with non-trivial topological order find direct applications in metrology (Klitzing et al 1980 Phys. Rev. Lett. 45 494-7) and promise future applications in quantum computing (Freedman 2001 Found. Comput. Math. 1 183-204; Kitaev 2003 Ann. Phys. 303 2-30). The quantum Hall effect derives from transverse conductance, quantized to unprecedented precision in accordance with the system's topology (Laughlin 1981 Phys. Rev. B 23 5632-33). At magnetic fields beyond the reach of current condensed matter experiment, around 104 T, this conductance remains precisely quantized with values based on the topological order (Thouless et al 1982 Phys. Rev. Lett. 49 405-8). Hitherto, quantized conductance has only been measured in extended 2D systems. Here, we experimentally studied narrow 2D ribbons, just 3 or 5 sites wide along one direction, using ultracold neutral atoms where such large magnetic fields can be engineered (Jaksch and Zoller 2003 New J. Phys. 5 56; Miyake et al 2013 Phys. Rev. Lett. 111 185302; Aidelsburger et al 2013 Phys. Rev. Lett. 111 185301; Celi et al 2014 Phys. Rev. Lett. 112 043001; Stuhl etal 2015 Science 349 1514; Mancini et al 2015 Science 349 1510; An et al 2017 Sci. Adv. 3). We microscopically imaged the transverse spatial motion underlying the quantized Hall effect. Our measurements identify the topological Chern numbers with typical uncertainty of 5%, and show that although band topology is only properly defined in infinite systems, its signatures are striking even in nearly vanishingly thin systems.

2.
Proc Natl Acad Sci U S A ; 114(10): 2503-2508, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28196896

RESUMO

We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA