Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 35(7): 1086-1104, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38401125

RESUMO

Injectable bone substitute (IBS) materials are commonly used to fill irregular-shaped bone voids in non-load-bearing areas and can offer greater utility over those which are in prefabricated powder, granule, or block forms. This work investigates the impact of liquid-to-solid ratio (LSR) on the rheology and cytocompatibility of IBSs formulated from bioactive glass particles and ß-tricalcium phosphate (ß-TCP) in glycerol and poly(ethylene glycol) (PEG). IBS formulations of varying LSR were prepared and packed in 3 cc open-bore syringes and sterilized via gamma irradiation (10 kGy, 25 kGy). Gamma-irradiated formulations with high PEG content required the highest (73 N) mechanical force for injection from syringes. Oscillatory viscosity measurements revealed that the viscosity of samples was directly proportional to glycerol content. PEG and glycerol displayed competing effects on the washout resistance and cohesiveness of samples, which were based on total weight loss in media and Ca2+ ion release, respectively. Cell viability in 24-h extracts of 10 kGy gamma-sterilized and 25 kGy gamma-irradiated samples were 22.94% and 56.53%, respectively. The research highlights the complex interplay of IBS components on IBS rheology and, moreover, the cytotoxicity behaviors of beta-tricalcium phosphate-based injectable bone substitutes by in vitro experiments.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Sobrevivência Celular , Raios gama , Injeções , Teste de Materiais , Polietilenoglicóis , Reologia , Fosfatos de Cálcio/química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Camundongos , Viscosidade , Glicerol/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
2.
ACS Appl Bio Mater ; 6(10): 4100-4104, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37782232

RESUMO

Myocardial tissue engineering strategies such as fabrication of cardiac patches for tissue regeneration offer various solutions for the loss of function developed due to myocardial infarction. Here, we combined the hybrid structure (previously obtained and combined decellularized myocardium grafts with poly(glycerol-sebacate) polymer) with multiwalled carbon nanotubes (MWCNTs) to provide the essential characteristics for cardiac tissue regeneration. MWCNTs were doped in the cross-linked structure, and the conductivity and Young's modulus of the composite elastomer were found as 5 × 10-3 ± 1 × 10-3 S/m and 374 ± 75.8 kPa, respectively. The cell-material interaction was evaluated, and composite structures supported cell adhesion and showed no cytotoxic effect.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Miocárdio , Elastômeros/química , Engenharia Tecidual , Matriz Extracelular
3.
Curr Stem Cell Res Ther ; 18(8): 1150-1159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803277

RESUMO

OBJECTIVE: The Achilles tendon is the most frequently injured tendon in the human body, despite being the strongest. Many conventional treatments including medication, surgical interventions, and physical therapy are available, however, the desired results are often not achieved. Stromal vascular fraction (SVF) and bone marrow concentrate (BMC) are two additional cellular treatment options. The purpose of this study is to evaluate the effect of SVF and BMC, used as a combination, for the treatment of Achilles tendon injuries. METHODS: Five male New Zealand rabbits were used for each of the 6 study groups. A 3-mm of SVF and BMC were injected on the Achilles tendons at certain ratios. The histological results were classified by the Movin grading system for tendon healing. The collagen type-I and type-III structures in the tendons were examined by immunohistochemical evaluation. The expressions of tendon-specific genes were also examined by using the RT-PCR method to analyze tendon healing. RESULTS: Histological and immunohistochemical evaluation indicated that tendons receiving the SVF and BMAC mixture performed better than control and individual groups (p < 0.05). Moreover, RT-PCR evaluation showed that mixture-receiving groups were the closest similar to the uninjured group (p < 0.05). CONCLUSION: The combined use of BMC and SVF improved Achilles tendon healing when compared to the individual use of each mixture.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Humanos , Masculino , Animais , Coelhos , Medula Óssea/metabolismo , Fração Vascular Estromal , Cicatrização , Traumatismos dos Tendões/terapia , Tendão do Calcâneo/cirurgia
4.
J Biomater Sci Polym Ed ; 34(5): 587-611, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36219154

RESUMO

To search for a suitable meniscus repair material, acellular hybrid scaffolds consisting of in situ cross-linkable 3-D interpenetrating network structures were obtained by decellularization of the meniscus tissues followed by integration of the gel system. Decellularization efficiency was confirmed using a DNA quantification assay (82% decrease in DNA content) and histological stainings. In the second part of the study, the gelatin molecule was functionalized by adding methacrylic anhydride and the degree of functionalization was found to be 75% by (Proton-Nuclear Magnetic Resonance) 1H-NMR. Using this, a series of hybrid constructs named GelMA-Hybrid (G-Hybrid), GELMA/PEGDMA-Hybrid (PG-Hybrid), and GelMA/PEGDMA/HAMA-Hybrid (PGH-Hybrid) were prepared by cross-linking with UVA. Changes in the chemical structure were determined with Fourier Transform Infrared Spectrophotometer (FTIR). Water uptake capacities of cross-linked hybrid structures were measured in swelling studies, and it was found that hybrid scaffolds showed similar swelling properties compared to native counterparts. By compressive mechanical tests, enhanced mechanical properties were revealed in cross-linked scaffolds with PGH-Hybrid having the highest cross-link density. Protein denaturation and decomposition transition temperatures were improved by adding hydrogels to acellular scaffolds according to thermal gravimetric analyses (TGA). Cross-linked acellular scaffolds have exhibited a behavior close to native tissues with below 25% mass loss in phosphate buffer saline (PBS) and enzymatic solution. Cell viability was examined through Alamar Blue on the first day and cell viability in hybrid constructs was found to be above 80% while it was closer to the control group on the 7th day. It was concluded that the developed biomaterials could be used in meniscus tissue engineering with their tunable physicochemical and mechanical properties.


Assuntos
Menisco , Alicerces Teciduais , Alicerces Teciduais/química , Hidrogéis/química , Engenharia Tecidual , DNA , Gelatina/química
5.
ACS Appl Bio Mater ; 5(8): 3883-3895, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35839464

RESUMO

Thrombogenicity, which is commonly encountered in artificial heart valves after replacement surgeries, causes valvular failure. Even life-long anticoagulant drug use may not be sufficient to prevent thrombogenicity. In this study, it was aimed to develop a heart valve construct with antithrombogenic properties and suitable mechanical strength by combining multiwalled carbon nanotubes within a decellularized bovine pericardium. In this context, the decellularization process was performed by using the combination of freeze-thawing and sodium dodecyl sulfate (SDS). Evaluation of decellularization efficiency was determined by histology (Hematoxylin and Eosin, DAPI and Masson's Trichrome) and biochemical (DNA, sGAG and collagen) analyses. After the decellularization process of the bovine pericardium, composite pericardial tissues were prepared by incorporating -COOH-modified multiwalled carbon nanotubes (MWCNTs). Characterization of MWCNT incorporation was performed by ATR-FTIR, TGA, and mechanical analysis, while SEM and AFM were used for morphological evaluations. Thrombogenicity assessments were studied by platelet adhesion test, Calcein-AM staining, kinetic blood clotting, hemolysis, and cytotoxicity analyses. As a result of this study, the composite pericardial material revealed improved mechanical and thermal stability and hemocompatibility in comparison to decellularized pericardium, without toxicity. Approximately 100% success is achieved in preventing platelet adhesion. In addition, kinetic blood-coagulation analysis demonstrated a low rate and slow coagulation kinetics, while the hemolysis index was below the permissible limit for biomaterials.


Assuntos
Próteses Valvulares Cardíacas , Nanocompostos , Nanotubos de Carbono , Animais , Bovinos , Valvas Cardíacas , Hemólise
6.
J Biomater Appl ; 37(2): 287-302, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35422156

RESUMO

Prevascularization of tissue equivalents is critical for fulfilling the need for sufficient vascular organization for nutrient and gas transport. Hence, endothelial cell culture on biomaterials is of great importance for researchers. Numerous alternate strategies have been suggested in this sense, with cell-based methods being the most commonly employed. In this study, poly (glycerol sebacate) (PGS) elastomers with varying crosslinking ratios were synthesized and their surfaces were patterned with channels by using laser ablation technique. In order to determine an ideal material for cell culture studies, the elastomers were subsequently mechanically, chemically, and biologically characterized. Following that, human umbilical vein endothelial cells (HUVECs) were seeded into the channels established on the PGS membranes and cultured under various culture conditions to establish the optimal culture parameters. Lastly, the endothelial cell responses to the synthesized PGS elastomers were evaluated. Remarkable cell proliferation and impressive cellular organizations were noticed on the constructs created as part of the investigation. On the concrete output of this research, arrangements in various geometries can be created by laser ablation method and the effects of various molecules, drugs or agents on endothelial cells can be evaluated. The platforms produced can be employed as an intermediate biomaterial layer containing endothelial cells for vascularization of tissue-engineered structures, particularly in layer-by-layer tissue engineering approaches.


Assuntos
Elastômeros , Glicerol , Materiais Biocompatíveis/química , Decanoatos/química , Elastômeros/química , Células Endoteliais , Glicerol/análogos & derivados , Glicerol/química , Humanos , Polímeros , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
Tissue Cell ; 74: 101693, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34856451

RESUMO

As a promising approach in tissue engineering, decellularization has become one of the mostly-studied research areas in tissue engineering thanks to its potential to bring about several advantages over synthetic materials since it can provide a 3-dimensional ECM structure with matching biomechanical properties of the target tissue. Amniotic membranes are the tissues that nurture the embryos during labor. Similarly, these materials have also been proposed for tissue regeneration in several applications. The main drawback in using amniotic membranes is the limited thickness of these materials since most tissues require a 3D matrix for an enhance regeneration. In order to prevent this limitation, here we report a facile fabrication methodology for multilayered amniotic membrane-based tissue constructs. The amniotic membranes of Wistar albino rats were first decellularized with the physical and chemical methods and utilized as scaffolds. Secondly, the prepared decellularized membranes were sutured to form a multilayered 3D structure. Within the study, 7 groups including control (PBS), were prepared based on physical and chemical decellularization methods. UV exposure and freezing techniques were used as a physical decellularization methods while hypertonic medium and SDS (sodium dodecyl sulfate) protocols were used as chemical decellularization methods. The combinations of both protocols were also used. In groups, A was the control and group B was applied just UV. In group C was applied UV and freezing. In addition to UV and freezing, in group D was applied hypertonic solution while group E was applied SDS (0.03 %). In group F was applied UV, freezing, hypertonic solution and SDS (0.03 %). In group G was applied UV, hypertonic solution, SDS (0.03 %) and freezing, respectively. Based on the histological and quantitative analyses, F and G groups were found as the most efficient decellularization protocols in rat amniotic membranes. Then, group F and G decellularized amniotic membranes were used to form scaffolds and thus-formed matrices were further characterized in vitro cell culture studies and mechanical tests. Cytotoxicity analyses performed using MTT showed a good cell viability in F and G groups scaffolds. The percentage viability rate was higher in G group (81.3 %) compared to F (75.33 %) and also cell viability in G group was found more meaningful according to p value which was obtained 0.007. Cellular adhesions after in vitro cell culture and morphology of scaffolds were evaluated by scanning electron microscopy (SEM). It was observed that the cells cultivated in equal amounts of tissue scaffolds were higher in the F compared to that observed in group G. The mechanical testing with 40 N force revealed 0.77 mm displacement in group F while it was 0.75 mm in group G. Moreover, according to force-controlled test, 2.9 mm displacement of F group and 1.2 mm displacement of G group was measured. As a result, this study shows that the multilayered decellularized amniotic membrane scaffolds support cell survival and adhesion and can form a flexible biomaterial with desired handling properties.


Assuntos
Âmnio/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Linhagem Celular , Feminino , Camundongos , Ratos , Ratos Wistar
8.
Invest New Drugs ; 40(1): 172-181, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34383183

RESUMO

BACKGROUND: Osteosarcoma is a highly malignant bone tumor, most frequently occurring in the rapid bone growth phase. Effective treatment of this disease is hindered by the lack of specific probes for early diagnosis and the fast cancer widespread. METHODS: To find such probes, the cell-Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) methodology was implemented against the human osteosarcoma MG-63 cell line towards the selection of new specific aptamers. After 10 rounds of selection, the aptamer DNA pool was Sanger sequenced and the sequences were subjected to a bioinformatic analysis that included sequence alignment, phylogenetic relationship, and secondary structure prediction. RESULTS: A DNA aptamer (OS-7.9), with a dissociation constant (Kd) value in the nanomolar range (12.8 ± 0.9 nM), revealed high affinity against the target cells at the physiological temperature. Furthermore, the selected aptamer also recognized lung carcinoma and colon colorectal adenocarcinoma cell lines, which are reported as common metastasis sites of osteosarcoma. CONCLUSIONS: These results suggest that OS-7.9 could recognize a common protein expressed in these cancer cells, possibly becoming a potential molecular probe for early diagnosis and targeted therapies for metastatic disease. Moreover, to the best of our knowledge, this was the first attempt to generate a DNA aptamer (OS-7.9 aptamer) against the MG-63-cell line by cell-SELEX.


Assuntos
Aptâmeros de Nucleotídeos/genética , Osteossarcoma/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Camundongos , Osteossarcoma/patologia
9.
Artif Organs ; 46(4): 618-632, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34714559

RESUMO

BACKGROUND: Decellularized tissues based on well-conserved extracellular matrices (ECMs) are a common area of research in tissue engineering. Although several decellularization protocols have been suggested for several types of tissues, studies on the optic nerve have been limited. METHODS: We report decellularization protocol with different detergent for the preparation of acellular optic nerve and tissues were examined. DNA, glycosaminoglycan (GAG), and collagen content of the groups were evaluated with biochemical analyses and examined with histological staining. Mechanical properties, chemical components as well as cytotoxic properties of tissues were compared. RESULTS: According to the results, it was determined that TX-100 (Triton X-100) was insufficient in decellularization when used alone. In addition, it was noticed that 85% of GAG content was preserved by using TX-100 and TX-100-SD (sodium deoxycholate), while this ratio was calculated as 30% for SDS. In contrast, the effect of the decellularization protocols on ECM structure of the tissues was evaluated by scanning and transmission electron microscopy (SEM and TEM) and determined their mechanical properties. Cytotoxicity analyses were exhibited minimum 95% cell viability for all groups, suggesting that there are no cytotoxic properties of the methods on L929 mouse fibroblast cells. CONCLUSIONS: The combination of TX-100-SD and TX-100-SDS (sodium dodecyl sulfate) were was determined as the most effective methods to the literature for optic nerve decellularization.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Animais , Matriz Extracelular/química , Camundongos , Octoxinol/análise , Octoxinol/química , Octoxinol/farmacologia , Nervo Óptico , Dodecilsulfato de Sódio/química , Engenharia Tecidual/métodos , Alicerces Teciduais
10.
Bioengineering (Basel) ; 10(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36671602

RESUMO

The microarchitecture of bone tissue engineering (BTE) scaffolds has been shown to have a direct effect on the osteogenesis of mesenchymal stem cells (MSCs) and bone tissue regeneration. Poly(glycerol sebacate) (PGS) is a promising polymer that can be tailored to have specific mechanical properties, as well as be used to create microenvironments that are relevant in the context of BTE applications. In this study, we utilized PGS elastomer for the fabrication of a biocompatible and bioactive scaffold for BTE, with tissue-specific cues and a suitable microstructure for the osteogenic lineage commitment of MSCs. In order to achieve this, the PGS was functionalized with a decellularized bone (deB) extracellular matrix (ECM) (14% and 28% by weight) to enhance its osteoinductive potential. Two different pore sizes were fabricated (small: 100-150 µm and large: 250-355 µm) to determine a preferred pore size for in vitro osteogenesis. The decellularized bone ECM functionalization of the PGS not only improved initial cell attachment and osteogenesis but also enhanced the mechanical strength of the scaffold by up to 165 kPa. Furthermore, the constructs were also successfully tailored with an enhanced degradation rate/pH change and wettability. The highest bone-inserted small-pore scaffold had a 12% endpoint weight loss, and the pH was measured at around 7.14. The in vitro osteogenic differentiation of the MSCs in the PGS-deB blends revealed a better lineage commitment of the small-pore-sized and 28% (w/w) bone-inserted scaffolds, as evidenced by calcium quantification, ALP expression, and alizarin red staining. This study demonstrates a suitable pore size and amount of decellularized bone ECM for osteoinduction via precisely tailored PGS elastomer BTE scaffolds.

11.
Biomed Mater ; 16(6)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34619670

RESUMO

Cardiovascular diseases (CVDs) are responsible for the major number of deaths around the world. Among these is heart failure after myocardial infarction whose latest therapeutic methods are limited to slowing the end-state progression. Numerous strategies have been developed to meet the increased demand for therapies regarding CVDs. This study aimed to establish a novel electrically conductive elastomer-based composite and assess its potential as a cardiac patch for myocardial tissue engineering. The electrically conductive carbon aerogels (CAs) used in this study were derived from waste paper as a cost-effective carbon source and they were combined with the biodegradable poly(glycerol-sebacate) (PGS) elastomer to obtain an electrically conductive cardiac patch material. To the best of our knowledge, this is the first report about the conductive composites obtained by the incorporation of CAs into PGS (CA-PGS). In this context, the incorporation of the CAs into the polymeric matrix significantly improved the elastic modulus (from 0.912 MPa for the pure PGS elastomer to 0.366 MPa for the CA-PGS) and the deformability (from 0.792 MPa for the pure PGS to 0.566 MPa for CA-PGS). Overall, the mechanical properties of the obtained structures were observed similar to the native myocardium. Furthermore, the addition of CAs made the obtained structures electrically conductive with a conductivity value of 65 × 10-3S m-1which falls within the range previously recorded for human myocardium. Thein vitrocytotoxicity assay with L929 murine fibroblast cells revealed that the CA-PGS composite did not have cytotoxic characteristics. On the other hand, the studies conducted with H9C2 rat cardiac myoblasts revealed that final structures were suitable for MTE applications according to the successes in cell adhesion, cell proliferation, and cell behavior.


Assuntos
Carbono , Engenharia Tecidual , Animais , Decanoatos/química , Glicerol/análogos & derivados , Glicerol/química , Camundongos , Polímeros/química , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
12.
J Biomater Appl ; 36(5): 818-833, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34162235

RESUMO

In this study, it was aimed to present an approach for the development of multi-layered tissue engineering constructs by using cell sheet engineering. Briefly, MC3T3-E1 mouse pre-osteoblast cells were cultured in temperature-responsive plates (Nunc Upcell®) in the presence of osteogenic medium and the resulting cell sheets were laminated with electrospun poly(L-lactic acid) (PLLA) membranes to obtain viable three-dimensional, thick constructs. The constructs prepared without PLLA membranes were used as control. The cell viability and death in the resulting structures were investigated by microscopic and colorimetric methods. The in vitro performance of the structures was discussed comparatively. Alkaline phosphatase (ALP) activity, collagen and sulfated glycosaminoglycan (sGAG) content values were calculated. The presented approach shows potential for engineering applications of complex tissues with at least two or more microenvironments such as osteochondral, corneal or vascular tissues.


Assuntos
Osso e Ossos/fisiologia , Osteogênese/fisiologia , Animais , Diferenciação Celular , Sobrevivência Celular , Colágeno , Glicosaminoglicanos , Camundongos , Osteoblastos/citologia , Poliésteres , Engenharia Tecidual/métodos
13.
Soft Robot ; 8(3): 262-272, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32552442

RESUMO

Introducing functional synthetic biomaterials to the literature became quite essential in biomedical technologies. For the growth of novel biomedical engineering approaches, progressive functional properties as well as the robustness of the manufacturing processes are essential. By using acid-induced epoxide ring-opening polymerizations through catalysts, a wide variety of biodegradable and functionalized biomaterials can be synthesized. Sebacic acid (SA) and poly(ethylene glycol) diglycidyl ether (PEGDGE) are amongst the FDA-approved biocompatible materials. In this study, we focused on the rapid synthesis of caffeine-catalyzed self-healable elastomer via a facile microwave-assisted synthesis route. The elastomer prepared can be used in various applications, including tactile sensors, wearable electronics, and soft robotics. SA and PEGDGE were catalyzed in the presence of caffeine under microwave irradiation followed by crosslinking in vacuo, yielding an elastomeric material. The chemical characterizations of the obtained elastomer were carried out. The resulting material is transparent, highly stretchable, and has capacitive and self-healing properties even at room temperature. The material developed can be easily applied for the aforementioned applications.


Assuntos
Elastômeros , Micro-Ondas , Materiais Biocompatíveis , Cafeína , Elastômeros/química , Etilenoglicol
14.
ACS Omega ; 5(27): 16635-16644, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685830

RESUMO

Because of pharmaceutical-emerging contaminants in water resources, there has been a significant increase in the antibiotic resistance in bacteria. Therefore, the removal of antibiotics from water resources is essential. Various antibiotics have been greatly studied using many different carbon-based materials including graphene-based hydrogels and aerogels. In this study, carbon aerogels (CAs) were synthesized from waste paper sources and their adsorption behaviors toward three antibiotics (hygromycin B, gentamicin, and vancomycin) were investigated, for which there exist a limited number of reports in the literature. The prepared CAs were characterized with scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and micro-computerized tomography (µ-CT). According to the µ-CT results, total porosity and open porosity were calculated as 90.80 and 90.76%, respectively. The surface area and surface-to-volume ratio were found as 795.15 mm2 and 16.79 mm-1, respectively. The specific surface area of the CAs was found as 104.2 m2/g. A detailed adsorption study was carried out based on different pH values, times, and analyte concentrations. The adsorption capacities were found as 104.16, 81.30, and 107.52 mg/g for Hyg B, Gen, and Van, respectively. For all three antibiotics, the adsorption behavior fits the Langmuir model. The kinetic studies showed that the system fits the pseudo-second-order kinetic model. The production of CAs, within the scope of this study, is safe, facile, and cost-efficient, which makes these green adsorbents a good candidate for the removal of antibiotics from water resources. This study represents the first antibiotic adsorption study based on CAs obtained from waste paper.

15.
Methods Cell Biol ; 157: 49-79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32334720

RESUMO

Supercritical carbon dioxide (scCO2) is being used as an alternative approach to the traditional methods for the decellularization of tissues. This chapter describes the use of scCO2 for the decellularization of optic nerve, myocardium, and cornea tissues. The main goal of this method is to burst the cells with high-pressure, remove them from the tissues and to maintain the extracellular matrix structure of the native tissues. For this purpose, several scCO2-assisted decellularization protocols were developed and optimized according to the requirements of these tissues. Efficiencies of the utilized decellularization protocols were determined via histological and morphological analysis. The decrease in the DNA content and the preserved glycosaminoglycan (GAG) amounts were also used as assessment parameters.


Assuntos
Dióxido de Carbono/química , Matriz Extracelular , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Bovinos , Córnea/citologia , Glicosaminoglicanos/análise , Miocárdio/citologia , Nervo Óptico/citologia
16.
ACS Biomater Sci Eng ; 6(1): 122-133, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463211

RESUMO

The decellularization protocols applied on the corneal stromal constructs in the literature usually fail to provide a corneal matrix with sufficient mechanical and optical properties since they alter the extracellular matrix (ECM) microstructure. In this study, to overcome these limitations, a hybrid cornea stromal construct was engineered by combining gelatin methacrylate (GelMA) and decellularized ECM. Photo-cross-linking of impregnated cell laden GelMA in situ using different UV cross-linking energies (3200, 6210, and 6900 µJ/cm2) and impregnation times (up to 24 h) within a decellularized bovine cornea enhanced light transmission and restored lost mechanical features following the harsh decellularization protocol. The light transmittance value for optimized hybrid constructs (53.6%) was increased nearly 10 fold compared to that of decellularized cornea (5.84%). The compressive modulus was also restored up to 6 fold with calculated values of 5040 and 870 kPa for the hybrid and decellularized samples, respectively. These values were found to be quite close to that of native cornea (48.5%, 9790 kPa). ATR-FTIR analyses were carried out to confirm the final chemical structure. The degradation profiles showed similar decomposition behaviors to that of native cornea. In vitro culture studies showed a high level of cell viability and cell proliferation rate was found remarkable up to the 14th day of the culture period regardless of selected UV energy level. The methodology used in the preparation of the hybrid cornea stromal constructs in this study is a promising approach toward the development of successful corneal transplants.


Assuntos
Córnea , Hidrogéis , Animais , Bovinos , Matriz Extracelular , Gelatina , Metacrilatos
17.
Mater Sci Eng C Mater Biol Appl ; 106: 110293, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753347

RESUMO

The inadequate donor source and the difficulty of using natural grafts in tendon repair and regeneration has led researchers to develop biodegradable and biocompatible synthetic based tissue equivalents. Poly(glycerol sebacate) (PGS) is a surface-erodible bioelastomer and has been increasingly investigated in a variety of biomedical applications. In this study, PGS elastomeric sheets were prepared by using a facile microwave method and used as elastomeric platform for the first time under mechanical stimulation to induct the tenocyte gene expression. It is revealed that elastomeric PGS sheets promote progenitor tendon cell structure by increasing proliferation and gene expression with regard to tendon extracellular matrix components. Human tenocytes were seeded onto poly(glycerol-sebacate) sheets and were cultured two days prior to transfer to dynamic culture in a bioreactor system. Cell culture studies were carried out for 12 days under 0%, 3% and 6% strain at 0.33 Hz. The PGS-cell constructs were examined by using Scanning Electron Microscopy (SEM), cell viability via live/dead staining using confocal microscopy, and GAG/DNA analysis. In addition, gene expression was examined using real-time polymerase chain reaction (RT-PCR). Tenocytes cultured upon PGS scaffolds under 6% cyclic strain exhibited tendon-like gene expression profile compared to 3% and 0% strain groups. The results of this study show that PGS is a suitable material in promoting tendon tissue formation under dynamic conditions.


Assuntos
Decanoatos/química , Glicerol/análogos & derivados , Polímeros/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Reatores Biológicos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Decanoatos/farmacologia , Glicerol/química , Glicerol/farmacologia , Humanos , Polímeros/farmacologia , Tenócitos/citologia , Tenócitos/metabolismo , Alicerces Teciduais/química , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Artif Cells Nanomed Biotechnol ; 46(sup2): 1145-1153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29886755

RESUMO

Cell sheet engineering is an emerging field based on the acquisition of cells together with their extracellular matrix (ECM) and is used not only in vitro but also in regeneration studies of various tissues in the clinic. Within this scope, wide variety of cell types have been investigated in terms of sheet formation and underlying mechanism. MC3T3-E1 is a mouse pre-osteoblast cell line that has greatly attracted researchers' attention for bone tissue engineering (BTE) applications thanks to its high proliferation and differentiation properties. The potential of MC3T3-E1 cells on sheet formation and the effects of culture conditions have not been investigated in detail. This study aims to examine the effects of growth and osteogenic medium on cell sheet formation of MC3T3-E1. As a result of this study; intact, ECM-rich, transferable cell sheets at the beginning of the mineralization phase of the differentiation process were obtained by using osteogenic medium. Hereafter, 3D tissue model can be constructed by stacking MC3T3 cell sheets in vitro. This 3D model can conveniently be used for the development of novel biomaterials and in vitro drug screening applications to reduce the need for animal experiments.


Assuntos
Engenharia Celular/métodos , Osteogênese , Células 3T3 , Animais , Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Colágeno/metabolismo , Meios de Cultura/química , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Camundongos
19.
J Biomed Mater Res B Appl Biomater ; 106(6): 2157-2168, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29024376

RESUMO

Corneal tissue engineering efforts to obtain corneal tissue matrices through various types of materials for the replacement of damaged tissues. In this study, three different corneal constructs were prepared and evaluated in terms of morphological, optical, and biological characteristics. Type-I collagen was used to obtain collagen foam scaffolds through dehydrothermal crosslinking, while poly(l-lactic acid) (PLLA) was used to produce both random and aligned oriented electrospun corneal constructs. Bovine corneas were decellularized as third matrix. Software analyses showed that average pore size of collagen scaffolds was 88.207 ± 29.7 µm, while the average fiber diameter of aligned and random PLLA scaffolds were 0.69 ± 0.03 and 0.65 ± 0.03 µm, respectively. Degradation profiles revealed that collagen foam exhibits high degradation (20% mass loss) while electrospun PLLA scaffolds hold low degradation (9% mass loss) rates at day-28. Transmittance values of the obtained scaffolds were calculated as 92, 80, and 70% for collagen, PLLA, and decellularized cornea constructs, respectively. The evaluation of stromal keratocyte behavior on the constructs revealed that the cells exhibited their own morphology mostly on the aligned PLLA constructs, while they were mostly active on random PLLA electrospun corneal scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2157-2168, 2018.


Assuntos
Colágeno/química , Córnea/fisiologia , Matriz Extracelular/química , Nanofibras/química , Poliésteres/química , Regeneração , Telas Cirúrgicas , Animais , Bovinos , Células Cultivadas , Queratinócitos/metabolismo , Queratinócitos/patologia , Teste de Materiais
20.
J Tissue Eng ; 8: 2041731417697500, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694960

RESUMO

Cartilage defects are a source of pain, immobility, and reduced quality of life for patients who have acquired these defects through injury, wear, or disease. The avascular nature of cartilage tissue adds to the complexity of cartilage tissue repair or regeneration efforts. The known limitations of using autografts, allografts, or xenografts further add to this complexity. Autologous chondrocyte implantation or matrix-assisted chondrocyte implantation techniques attempt to introduce cultured cartilage cells to defect areas in the patient, but clinical success with these are impeded by the avascularity of cartilage tissue. Biodegradable, synthetic scaffolds capable of supporting local cells and overcoming the issue of poor vascularization would bypass the issues of current cartilage treatment options. In this study, we propose a biodegradable, tri-layered (poly(glycolic acid) mesh/poly(l-lactic acid)-colorant tidemark layer/collagen Type I and ceramic microparticle-coated poly(l-lactic acid)-poly(ϵ-caprolactone) monolith) osteochondral plug indicated for the repair of cartilage defects. The porous plug allows the continual transport of bone marrow constituents from the subchondral layer to the cartilage defect site for a more effective repair of the area. Assessment of the in vivo performance of the implant was conducted in an ovine model (n = 13). In addition to a control group (no implant), one group received the implant alone (Group A), while another group was supplemented with hyaluronic acid (0.8 mL at 10 mg/mL solution; Group B). Analyses performed on specimens from the in vivo study revealed that the implant achieves cartilage formation within 6 months. No adverse tissue reactions or other complications were reported. Our findings indicate that the porous biocompatible implant seems to be a promising treatment option for the cartilage repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...