Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38328243

RESUMO

Background: HPV-associated oropharyngeal cancer (HPV+OPSCC) is the most common HPV-associated cancer in the United States yet unlike cervical cancer lacks a screening test. HPV+OPSCCs are presumed to start developing 10-15 years prior to clinical diagnosis. Circulating tumor HPV DNA (ctHPVDNA) is a sensitive and specific biomarker for HPV+OPSCC. Taken together, blood-based screening for HPV+OPSCC may be feasible years prior to diagnosis. Methods: We developed an HPV whole genome sequencing assay, HPV-DeepSeek, with 99% sensitivity and specificity at clinical diagnosis. 28 plasma samples from HPV+OPSCC patients collected 1.3-10.8 years prior to diagnosis along with 1:1 age and gender-matched controls were run on HPV-DeepSeek and an HPV serology assay. Results: 22/28 (79%) of cases and 0/28 controls screened positive for HPV+OPSCC with 100% detection within four years of diagnosis and a maximum lead time of 7.8 years. We next applied a machine learning model classifying 27/28 cases (96%) with 100% detection within 10 years. Plasma-based PIK3CA gene mutations, viral genome integration events and HPV serology were used to orthogonally validate cancer detection with 68% (19/28) of the cohort having multiple cancer signals detected. Molecular fingerprinting of HPV genomes was performed across patients demonstrating that each viral genome was unique, ruling out contamination. In patients with tumor blocks from diagnosis (15/28), molecular fingerprinting was performed within patients confirming the same viral genome across time. Conclusions: We demonstrate accurate blood-based detection of HPV-associated cancers with lead times up to 10 years before clinical cancer diagnosis and in doing so, highlight the enormous potential of ctDNA-based cancer screening.

2.
Nat Commun ; 15(1): 1200, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331898

RESUMO

The complexity of the tumor microenvironment (TME) is a crucial factor in lung adenocarcinoma (LUAD) progression. To gain deeper insights into molecular mechanisms of LUAD, we perform an integrative single-cell RNA sequencing (scRNA-seq) data analysis of 377,574 cells from 117 LUAD patient samples. By linking scRNA-seq data with bulk gene expression data, we identify a cluster of prognostic-related UPP1high tumor cells. These cells, primarily situated at the invasive front of tumors, display a stronger association with the immunosuppressive components in the TME. Our cytokine array analysis reveals that the upregulation of UPP1 in tumor cells leads to the increased release of various immunosuppressive cytokines, with TGF-ß1 being particularly prominent. Furthermore, this UPP1 upregulation also elevates the expression of PD-L1 through the PI3K/AKT/mTOR pathway, which contributes to the suppression of CD8 + T cells. Cytometry by time-of-flight (CyTOF) analysis provides additional evidence of the role of UPP1 in shaping the immunosuppressive nature of the TME. Using patient-derived organoids (PDOs), we discover that UPP1high tumors exhibit relatively increased sensitivity to Bosutinib and Dasatinib. Collectively, our study highlights the immunosuppressive role of UPP1 in LUAD, and these findings may provide insights into the molecular features of LUAD and facilitate the development of personalized treatment strategies.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Linfócitos T CD8-Positivos , Citocinas , Imunossupressores , Neoplasias Pulmonares/genética , Fosfatidilinositol 3-Quinases/genética , Microambiente Tumoral/genética
3.
J Immunol Res ; 2023: 9946911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342762

RESUMO

Introduction: Circadian rhythm is involved in multiple biological activities and implicated in cancer development. However, the role of circadian rhythm in head and neck squamous cell carcinoma (HNSCC) has not been fully interpreted yet. Herein, the present study set out to explore the significance of circadian regulator genes (CRGs) in HNSCC. Materials and Methods: The molecular landscape and clinical significance of 13 CRGs in HNSCC were explored based on The Cancer Genome Atlas (TCGA). The biological functions of PER3, a key CRG, were validated by cellular experiments. The correlation of CRGs with microenvironment, pathway activities, and prognosis was determined by bioinformatic algorithms. A novel circadian score was introduced to evaluate the circadian modification pattern of each patient and further validated in an independent cohort from the Gene Expression Omnibus (GEO) dataset. Results: CRGs presented high heterogeneity in HNSCC at both genomic and transcriptomic levels. Specifically, PER3 indicated a better prognosis and inhibited HNSCC cell proliferation. Moreover, HNSCC tissues displayed three circadian regulator patterns with distinct clinical outcomes, transcriptomic characteristics, and microenvironment features. Circadian score was an independent risk factor and exhibited excellent predictive efficiency in both the training cohort from the TCGA database and the validation cohort from the GEO database. Conclusions: CRGs played an indispensable role in HNSCC development. An in-depth exploration of circadian rhythm would improve the understanding of HNSCC carcinogenesis and confer novel insights for future clinical practices.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/genética , Microambiente Tumoral/genética , Prognóstico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica
4.
Carcinogenesis ; 44(3): 232-241, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-36857607

RESUMO

Protein tyrosine phosphatases (PTPs) are involved in malignant transformation and metastasis. According to one of our previous studies, Slingshot homolog 1 (SSH1), a member of PTPs, is significantly associated with the survival of intrahepatic cholangiocarcinoma (iCCA) patients. However, the underlying mechanisms of SSH1 in iCCA remain largely elusive. Here, the expression and clinical significance of SSH1 were assessed using the iCCA patient samples. The results showed that SSH1 was dramatically up-regulated in iCCA tissues and elevated SSH1 expression was associated with worse overall survival of iCCA patients. Overexpression of SSH1 accelerated the proliferation, migration, and invasion of iCCA cells, and also inhibited cell apoptosis. Furthermore, the downstream signaling pathway of SSH1 in iCCA was explored and it was revealed that the increased expression of SSH1 could activate the p38 mitogen-activated protein kinase (MAPK) pathway and enhance the expression of C-X-C motif chemokine ligand 8 (CXCL8). Notably, the high correlation of SSH1 with CXCL8 jointly indicated the poor prognosis in iCCA patients. Thus, our study suggests SSH1 as a potentially promising target for iCCA, which promoted iCCA progression through a potential p38 MAPK-CXCL8 axis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Apoptose/genética , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Fosfoproteínas Fosfatases/genética
5.
Cell Oncol (Dordr) ; 46(1): 79-91, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36348252

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is the second-most lethal primary liver cancer and its prognosis remains dismal. N-glycosylation, which is biosynthesized by a number of glycosyltransferases, plays an important role in a variety of biological processes and is associated with cancer development and progression. METHODS: Based on our previous proteogenomic resources from an iCCA cohort of 262 patients, fucosyltransferases 8 (FUT8) showed significant prognosis relevance in iCCA. Tumor tissues from iCCA patients were used to evaluate the correlation between its expression and clinical information. Gain/loss-of-function experiments in iCCA cell lines were performed to elucidate the biological function of FUT8. In addition, its downstream pathways and post-transcriptional regulators were inferred and verified. RESULTS: Elevated FUT8 expression was clinically associated with worse overall survival in iCCA patients. Its overexpression promoted migration, invasion and proliferation ability of iCCA cells. In addition, miR-122-5p was found to act as a post-transcriptional regulator of FUT8 and proved to inhibit FUT8 expression and then suppress the proliferation and migration ability of iCCA cell lines. Furthermore, FUT8 was observed to promote iCCA development through PI3K/AKT signaling pathway. CONCLUSIONS: These findings demonstrated that FUT8, regulated by miR-122-5p, could be a tumor promoter of iCCA through PI3K/AKT signaling pathway.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , MicroRNAs/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
6.
Hepatobiliary Surg Nutr ; 11(5): 684-695, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36268256

RESUMO

Background: Intrahepatic cholangiocarcinoma (ICC) is a highly metastatic cancer. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) enables sensitive tumor and metastasis detection. Our aim is to evaluate the influence of pre-treatment PET/CT on the N- and M-staging and subsequent clinical management in ICC patients. Methods: Between August 2010 and August 2018, 660 consecutive ICC patients, without prior anti-tumor treatments nor other malignancies, were enrolled. The diagnostic performance of PET/CT on the N- and M-staging was compared with conventional imaging, and the preoperative staging accuracy and treatment re-allocation by PET/CT were retrospectively calculated. Survival difference was compared between patients receiving PET/CT or not after propensity score matching. Results: Patients were divided into group A (n=291) and group B (n=369) according to whether PET/CT was performed. Among 291 patients with both PET/CT and conventional imaging for staging in group A, PET/CT showed significantly higher sensitivity (83.0% vs. 70.5%, P=0.001), specificity (88.3% vs. 74.9%, P<0.001) and accuracy (86.3% vs. 73.2%, P<0.001) than conventional imaging in diagnosing regional lymph node metastasis, as well as higher sensitivity (87.8% vs. 67.6%, P<0.001) and accuracy (93.5% vs. 89.3%, P=0.023) in diagnosing distant metastasis. Overall, PET/CT improved the accuracy of preoperative staging from 60.1% to 71.8% (P<0.001), and modified clinical treatment strategy in 5.8% (17/291) of ICC patients, with unique roles in different tumor-node-metastasis (TNM) stages. High tumor-to-non-tumor ratio (TNR) predicted poor overall survival [hazard ratio (HR) = 2.17; 95% confidence interval (CI): 1.49-3.15; P<0.001]. Furthermore, patients performing PET/CT had longer overall survival compared with those without PET/CT (HR =0.74; 95% CI: 0.58-0.93; P=0.011) after propensity score matching. Conclusions: PET/CT was valuable for diagnosing regional lymph node metastasis and distant metastasis in ICC patients, and facilitated accurate tumor staging and optimal treatment allocation.

8.
Front Cell Dev Biol ; 9: 695533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434928

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies worldwide. Checkpoint blockade immunotherapy has made tremendous progress in the treatment of a variety of cancers in recent years. Costimulatory molecules constitute the foundation of cancer immunotherapies and are deemed to be promising targets for cancer treatment. This study attempted to evaluate the potential value of costimulatory molecule genes (CMGs) in HNSCC. MATERIALS AND METHODS: Based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset, we identified the prognostic value of CMGs in HNSCC. Subsequently, CMGs-based signature (CMS) to predict overall survival of HNSCC patients was established and validated. The differences of downstream pathways, clinical outcomes, immune cell infiltration, and predictive immunotherapy responses between different CMS subgroups were investigated via bioinformatic algorithms. We also explored the biological functions of TNFRSF12A, one risk factor of CMS, by in vitro experiments. RESULTS: Among CMGs, 22 genes were related to prognosis based on clinical survival time in HNSCC. Nine prognosis-related CMGs were selected to establish CMS. CMS was an independent risk factor and could indicate the survival of HNSCC patients, the component of tumor-infiltrating lymphocytes, and the immunotherapy response rate. Functional enrichment analysis confirmed that CMS might involve immune-relevant processes. Additionally, TNFRSF12A was related to poor prognosis and enhanced malignant phenotype of HNSCC. CONCLUSION: Collectively, CMS could accurately indicate prognosis, evaluate the tumor immune microenvironment, and predict possible immunotherapy outcomes for HNSCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...