Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Hum Genet ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691166

RESUMO

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.

2.
Hum Genet ; 142(6): 819-834, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086329

RESUMO

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.


Assuntos
Surdez , Perda Auditiva , Humanos , Proteoma/genética , Perda Auditiva/genética , Mutação de Sentido Incorreto , Surdez/genética
3.
Res Sq ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778238

RESUMO

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.

4.
Clin Genet ; 103(6): 699-703, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807241

RESUMO

Hereditary deafness and retinal dystrophy are each genetically heterogenous and clinically variable. Three small unrelated families segregating the combination of deafness and retinal dystrophy were studied by exome sequencing (ES). The proband of Family 1 was found to be compound heterozygous for NM_004525.3: LRP2: c.5005A > G, p.(Asn1669Asp) and c.149C > G, p.(Thr50Ser). In Family 2, two sisters were found to be compound heterozygous for LRP2 variants, p.(Tyr3933Cys) and an experimentally confirmed c.7715 + 3A > T consensus splice-altering variant. In Family 3, the proband is compound heterozygous for a consensus donor splice site variant LRP2: c.8452_8452 + 1del and p.(Cys3150Tyr). In mouse cochlea, Lrp2 is expressed abundantly in the stria vascularis marginal cells demonstrated by smFISH, single-cell and single-nucleus RNAseq, suggesting that a deficiency of LRP2 may compromise the endocochlear potential, which is required for hearing. LRP2 variants have been associated with Donnai-Barrow syndrome and other multisystem pleiotropic phenotypes different from the phenotypes of the four cases reported herein. Our data expand the phenotypic spectrum associated with pathogenic variants in LRP2 warranting their consideration in individuals with a combination of hereditary hearing loss and retinal dystrophy.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Miopia , Distrofias Retinianas , Animais , Camundongos , Humanos , Perda Auditiva Neurossensorial/genética , Surdez/genética , Miopia/genética , Mutação , Linhagem , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
5.
Genet Med ; 24(12): 2555-2567, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36194208

RESUMO

PURPOSE: De novo variants (DNVs) are a well-recognized cause of genetic disorders. The contribution of DNVs to hearing loss (HL) is poorly characterized. We aimed to evaluate the rate of DNVs in HL-associated genes and assess their contribution to HL. METHODS: Targeted genomic enrichment and massively parallel sequencing were used for molecular testing of all exons and flanking intronic sequences of known HL-associated genes, with no exclusions on the basis of type of HL or clinical features. Segregation analysis was performed, and previous reports of DNVs in PubMed and ClinVar were reviewed to characterize the rate, distribution, and spectrum of DNVs in HL. RESULTS: DNVs were detected in 10% (24/238) of trios for whom segregation analysis was performed. Overall, DNVs were causative in at least ∼1% of probands for whom a genetic diagnosis was resolved, with marked variability based on inheritance mode and phenotype. DNVs of MITF were most common (21% of DNVs), followed by GATA3 (13%), STRC (13%), and ACTG1 (8%). Review of reported DNVs revealed gene-specific variability in contribution of DNV to the mutational spectrum of HL-associated genes. CONCLUSION: DNVs are a relatively common cause of genetic HL and must be considered in all cases of sporadic HL.


Assuntos
Surdez , Perda Auditiva , Humanos , Perda Auditiva/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Éxons , Peptídeos e Proteínas de Sinalização Intercelular
6.
Hum Genet ; 141(3-4): 401-411, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182233

RESUMO

Numerous computational prediction tools have been introduced to estimate the functional impact of variants in the human genome based on evolutionary constraints and biochemical metrics. However, their implementation in diagnostic settings to classify variants faced challenges with accuracy and validity. Most existing tools are pan-genome and pan-diseases, which neglected gene- and disease-specific properties and limited the accessibility of curated data. As a proof-of-concept, we developed a disease-specific prediction tool named Deafness Variant deleteriousness Prediction tool (DVPred) that focused on the 157 genes reportedly causing genetic hearing loss (HL). DVPred applied the gradient boosting decision tree (GBDT) algorithm to the dataset consisting of expert-curated pathogenic and benign variants from a large in-house HL patient cohort and public databases. With the incorporation of variant-level and gene-level features, DVPred outperformed the existing universal tools. It boasts an area under the curve (AUC) of 0.98, and showed consistent performance (AUC = 0.985) in an independent assessment dataset. We further demonstrated that multiple gene-level metrics, including low complexity genomic regions and substitution intolerance scores, were the top features of the model. A comprehensive analysis of missense variants showed a gene-specific ratio of predicted deleterious and neutral variants, implying varied tolerance or intolerance to variation in different genes. DVPred explored the utility of disease-specific strategy in improving the deafness variant prediction tool. It can improve the prioritization of pathogenic variants among massive variants identified by high-throughput sequencing on HL genes. It also shed light on the development of variant prediction tools for other genetic disorders.


Assuntos
Surdez , Perda Auditiva , Genômica , Perda Auditiva/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Virulência
7.
Hum Genet ; 141(3-4): 853-863, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34424407

RESUMO

Pathogenic variations in the OTOF gene are a common cause of hearing loss. To refine the natural history and genotype-phenotype correlations of OTOF-related auditory neuropathy spectrum disorders (ANSD), audiograms and distortion product otoacoustic emissions (DPOAEs) were collected from a diverse cohort of individuals diagnosed with OTOF-related ANSD by comprehensive genetic testing and also reported in the literature. Comparative analysis was undertaken to define genotype-phenotype relationships using a Monte Carlo algorithm. 67 audiograms and 25 DPOAEs from 49 unique individuals positive for OTOF-related ANSD were collected. 51 unique OTOF pathogenic variants were identified of which 21 were missense and 30 were loss of function (LoF; nonsense, splice-site, copy number variants, and indels). There was a statistically significant difference in low, middle, and high frequency hearing thresholds between missense/missense and LoF/missense genotypes as compared to LoF/LoF genotypes (average hearing threshold for low, middle and high frequencies 70.9, 76.0, and 73.4 dB vs 88.5, 95.6, and 94.7 dB) via Tukey's test with age as a co-variate (P = 0.0180, 0.0327, and 0.0347, respectively). Hearing declined during adolescence with missense/missense and LoF/missense genotypes, with an annual mid-frequency threshold deterioration of 0.87 dB/year and 1.87 dB/year, respectively. 8.5% of frequencies measured via DPOAE were lost per year in individuals with serial tests. Audioprofiling of OTOF-related ANSD suggests significantly worse hearing with LoF/LoF genotypes. The unique pattern of variably progressive OTOF-related autosomal recessive ANSD may be amenable to gene therapy in selected clinical scenarios.


Assuntos
Surdez , Perda Auditiva Central , Perda Auditiva Central/diagnóstico , Perda Auditiva Central/genética , Humanos , Proteínas de Membrana/genética , Mutação
8.
Genet Med ; 23(11): 2208-2212, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34230634

RESUMO

PURPOSE: The ClinGen Variant Curation Expert Panels (VCEPs) provide disease-specific rules for accurate variant interpretation. Using the hearing loss-specific American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, the Hearing Loss VCEP (HL VCEP) illustrates the utility of expert specifications in variant interpretation. METHODS: A total of 157 variants across nine HL genes, previously submitted to ClinVar, were curated by the HL VCEP. The curation process involved collecting published and unpublished data for each variant by biocurators, followed by bimonthly meetings of an expert curation subgroup that reviewed all evidence and applied the HL-specific ACMG/AMP guidelines to reach a final classification. RESULTS: Before expert curation, 75% (117/157) of variants had single or multiple variants of uncertain significance (VUS) submissions (17/157) or had conflicting interpretations in ClinVar (100/157). After applying the HL-specific ACMG/AMP guidelines, 24% (4/17) of VUS and 69% (69/100) of discordant variants were resolved into benign (B), likely benign (LB), likely pathogenic (LP), or pathogenic (P). Overall, 70% (109/157) variants had unambiguous classifications (B, LB, LP, P). We quantify the contribution of the HL-specified ACMG/AMP codes to variant classification. CONCLUSION: Expert specification and application of the HL-specific ACMG/AMP guidelines effectively resolved discordant interpretations in ClinVar. This study highlights the utility of ClinGen VCEPs in supporting more consistent clinical variant interpretation.


Assuntos
Genoma Humano , Perda Auditiva , Humanos , Testes Genéticos , Variação Genética/genética , Perda Auditiva/diagnóstico , Perda Auditiva/genética
10.
Clin Genet ; 100(1): 59-78, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713422

RESUMO

Hearing loss (HL) is one of the most common sensory defects affecting more than 466 million individuals worldwide. It is clinically and genetically heterogeneous with over 120 genes causing non-syndromic HL identified to date. Here, we performed exome sequencing (ES) on a cohort of Iranian families with no disease-causing variants in known deafness-associated genes after screening with a targeted gene panel. We identified likely causal variants in 20 out of 71 families screened. Fifteen families segregated variants in known deafness-associated genes. Eight families segregated variants in novel candidate genes for HL: DBH, TOP3A, COX18, USP31, TCF19, SCP2, TENM1, and CARMIL1. In the three of these families, intrafamilial locus heterogeneity was observed with variants in both known and novel candidate genes. In aggregate, we were able to identify the underlying genetic cause of HL in nearly 30% of our study cohort using ES. This study corroborates the observation that high-throughput DNA sequencing in populations with high rates of consanguineous marriages represents a more appropriate strategy to elucidate the genetic etiology of heterogeneous conditions such as HL.


Assuntos
Exoma/genética , Predisposição Genética para Doença/genética , Perda Auditiva/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Sequenciamento do Exoma/métodos , Adulto Jovem
11.
Eur J Hum Genet ; 29(6): 988-997, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398081

RESUMO

Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.


Assuntos
Frequência do Gene , Perda Auditiva/genética , Miosinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genes Recessivos , Perda Auditiva/etnologia , Perda Auditiva/patologia , Humanos , Lactente , Judeus/genética , Masculino , Mutação , Linhagem , Splicing de RNA
12.
Hum Genet ; 140(6): 915-931, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33496845

RESUMO

Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.


Assuntos
Substituição de Aminoácidos , Cromossomos Humanos Par 4/química , Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Mutação Puntual , Tetraspaninas/genética , Adulto , Alelos , Animais , Sequência de Bases , Mapeamento Cromossômico , Consanguinidade , Feminino , Expressão Gênica , Genes Recessivos , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Proteínas de Membrana/deficiência , Camundongos , Linhagem , Tetraspaninas/deficiência , Sequenciamento do Exoma , Peixe-Zebra
13.
Hum Genet ; 139(12): 1565-1574, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32562050

RESUMO

COCH is the most abundantly expressed gene in the cochlea. Unsurprisingly, mutations in COCH underly hearing loss in mice and humans. Two forms of hearing loss are linked to mutations in COCH, the well-established autosomal dominant nonsyndromic hearing loss, with or without vestibular dysfunction (DFNA9) via a gain-of-function/dominant-negative mechanism, and more recently autosomal recessive nonsyndromic hearing loss (DFNB110) via nonsense variants. Using a combination of targeted gene panels, exome sequencing, and functional studies, we identified four novel pathogenic variants (two nonsense variants, one missense, and one inframe deletion) in COCH as the cause of autosomal recessive hearing loss in a multi-ethnic cohort. To investigate whether the non-truncating variants exert their effect via a loss-of-function mechanism, we used minigene splicing assays. Our data showed both the missense and inframe deletion variants altered RNA splicing by creating an exon splicing silencer and abolishing an exon splicing enhancer, respectively. Both variants create frameshifts and are predicted to result in a null allele. This study confirms the involvement of loss-of-function mutations in COCH in autosomal recessive nonsyndromic hearing loss, expands the mutational landscape of DFNB110 to include coding variants that alter RNA splicing, and highlights the need to investigate the effect of coding variants on RNA splicing.


Assuntos
Surdez/genética , Proteínas da Matriz Extracelular/genética , Genes Recessivos/genética , Mutação com Perda de Função/genética , Adolescente , Adulto , Criança , Pré-Escolar , Cóclea/metabolismo , Cóclea/patologia , Códon sem Sentido/genética , Surdez/patologia , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Humanos , Masculino , Linhagem
14.
Int J Mol Sci ; 21(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486382

RESUMO

Deafness due to mutations in the DFNA5 gene is caused by the aberrant splicing of exon 8, which results in a constitutively active truncated protein. In a large family of European descent (MORL-ADF1) segregating autosomal dominant nonsyndromic hearing loss, we used the OtoSCOPE platform to identify the genetic cause of deafness. After variant filtering and prioritization, the only remaining variant that segregated with the hearing loss in the family was the previously described c.991-15_991-13delTTC mutation in DFNA5. This 3-base pair deletion in the polypyrimidine of intron 7 is a founder mutation in the East Asian population. Using ethnicity-informative markers and haplotype reconstruction within the DFNA5 gene, we confirmed family MORL-ADF1 is of European ancestry, and that the c.991-15_991-13delTTC mutation arose on a unique haplotype, as compared to that of East Asian families segregating this mutation. In-depth audiometric analysis showed no statistical difference between the audiometric profile of family MORL-ADF1 and the East Asian families. Our data suggest the polypyrimidine tract in intron 7 may be a hotspot for mutations.


Assuntos
Efeito Fundador , Perda Auditiva Neurossensorial/genética , Mutação , Receptores de Estrogênio/genética , Audiometria , Éxons , Feminino , Deleção de Genes , Haplótipos , Humanos , Íntrons , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Pirimidinas/metabolismo , Splicing de RNA
15.
Hum Genet ; 139(10): 1315-1323, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32382995

RESUMO

We present detailed comparative analyses to assess population-level differences in patterns of genetic deafness between European/American and Japanese cohorts with non-syndromic hearing loss. One thousand eighty-three audiometric test results (921 European/American and 162 Japanese) from members of 168 families (48 European/American and 120 Japanese) with non-syndromic hearing loss secondary to pathogenic variants in one of three genes (KCNQ4, TECTA, WFS1) were studied. Audioprofile characteristics, specific mutation types, and protein domains were considered in the comparative analyses. Our findings support differences in audioprofiles driven by both mutation type (non-truncating vs. truncating) and ethnic background. The former finding confirms data that ascribe a phenotypic consequence to different mutation types in KCNQ4; the latter finding suggests that there are ethnic-specific effects (genetic and/or environmental) that impact gene-specific audioprofiles for TECTA and WFS1. Identifying the drivers of ethnic differences will refine our understanding of phenotype-genotype relationships and the biology of hearing and deafness.


Assuntos
Proteínas da Matriz Extracelular/genética , Genótipo , Perda Auditiva Neurossensorial/genética , Canais de Potássio KCNQ/genética , Proteínas de Membrana/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Audiometria , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Proteínas Ligadas por GPI/genética , Expressão Gênica , Estudos de Associação Genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etnologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Lactente , Recém-Nascido , Japão , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Estados Unidos , População Branca
16.
J Hum Genet ; 65(7): 609-617, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32231217

RESUMO

Mutations in the CDC14A (Cell Division-Cycle 14A) gene, which encodes a conserved dual-specificity protein tyrosine phosphatase, have been identified as a cause of autosomal recessive non-syndromic hearing loss (DFNB32) and hearing impairment infertility male syndrome (HIIMS). We used next-generation sequencing to screen six deaf probands from six families segregating sensorineural moderate-to-profound hearing loss. Data analysis and variant prioritization were completed using a custom bioinformatics pipeline. We identified three homozygous loss of function variants (p.Arg345Ter, p.Arg376Ter, and p.Ala451Thrfs*43) in the CDC14A gene, segregating with deafness in each family. Of the six families, four segregated the p.Arg376Ter mutation, one family segregated the p.Arg345Ter mutation and one family segregated a novel frameshift (p.Ala451Thrfs*43) mutation. In-depth phenotyping of affected individuals ruled out secondary syndromic findings. This study implicates the p.Arg376Ter mutation might be as a founder mutation in the Iranian population. It also provides the first semen analysis for deaf males carrying mutations in exon 11 of CDC14A and reveals a genotype-phenotype correlation that delineates between DFNB32 and HIIMS. The clinical results from affected males suggest the NM_033313.2 transcript alone is sufficient for proper male fertility, but not for proper auditory function. We conclude that DFNB32 is a distinct phenotypic entity in males.


Assuntos
Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Infertilidade Masculina/genética , Proteínas Tirosina Fosfatases/genética , Adolescente , Adulto , Diagnóstico Diferencial , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Perda Auditiva/complicações , Perda Auditiva/diagnóstico , Perda Auditiva/patologia , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Infertilidade Masculina/complicações , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/patologia , Irã (Geográfico) , Masculino , Linhagem , Adulto Jovem
17.
Sci Rep ; 10(1): 6213, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277154

RESUMO

The mutational spectrum of many genes and their contribution to the global prevalence of hereditary hearing loss is still widely unknown. In this study, we have performed the mutational screening of EYA4 gene by DHLPC and NGS in a large cohort of 531 unrelated Spanish probands and one Australian family with autosomal dominant non-syndromic hearing loss (ADNSHL). In total, 9 novel EYA4 variants have been identified, 3 in the EYA4 variable region (c.160G > T; p.Glu54*, c.781del; p.Thr261Argfs*34 and c.1078C > A; p.Pro360Thr) and 6 in the EYA-HR domain (c.1107G > T; p.Glu369Asp, c.1122G > T; p.Trp374Cys, c.1281G > A; p.Glu427Glu, c.1282-1G > A, c.1601C > G; p.S534* and an heterozygous copy number loss encompassing exons 15 to 17). The contribution of EYA4 mutations to ADNSHL in Spain is, therefore, very limited (~1.5%, 8/531). The pathophysiology of some of these novel variants has been explored. Transient expression of the c-myc-tagged EYA4 mutants in mammalian COS7 cells revealed absence of expression of the p.S534* mutant, consistent with a model of haploinsufficiency reported for all previously described EYA4 truncating mutations. However, normal expression pattern and translocation to the nucleus were observed for the p.Glu369Asp mutant in presence of SIX1. Complementary in silico analysis suggested that c.1107G > T (p.Glu369Asp), c.1281G > A (p.Glu427Glu) and c.1282-1G > A variants alter normal splicing. Minigene assays in NIH3T3 cells further confirmed that all 3 variants caused exon skipping resulting in frameshifts that lead to premature stop codons. Our study reports the first likely pathogenic synonymous variant linked to DFNA10 and provide further evidence for haploinsufficiency as the common underlying disease-causing mechanism for DFNA10-related hearing loss.


Assuntos
Perda Auditiva Neurossensorial/genética , Mutação , Transativadores/genética , Animais , Células COS , Chlorocebus aethiops , Códon sem Sentido , Variações do Número de Cópias de DNA , Feminino , Mutação da Fase de Leitura , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem , Mutação Silenciosa , Espanha/epidemiologia
18.
Ophthalmic Genet ; 41(2): 151-158, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32281467

RESUMO

Background: Usher syndrome is the most common hereditary syndrome combining deafness and blindness. In the 2017 National Child Count of Children and Youth who are Deaf-Blind, Usher syndrome represented 329 of 10,000 children, but there were also at least 70 other etiologies of deaf-blindness documented. The purpose of this study was to analyze the work-up and ultimate diagnoses of 21 consecutive families who presented to the Genetic Eye-Ear Clinic (GEEC) at the University of Iowa. Our hypothesis was that most families referred to the GEEC would have initial and final diagnoses of Usher syndrome.Materials and Methods: Patients were identified through an IRB approved retrospective chart review of referrals to the GEEC between 2012 and 2019. Details about each patient's history, exam, and clinical and genetic work-up were recorded.Results: From 2012 to 2019, 21 families (25 patients) were referred to the collaborative GEEC. Overall molecular diagnostic rate in this cohort was 14/21 (67%). Evaluation resulted in a change of diagnosis in 11/21 (52%) families. Ultimately, there were eleven unique diagnoses including hereditary, non-hereditary, and independent causes of combined visual impairment and hearing loss. The most common diagnosis was Usher syndrome, which represented 6/21 (29%) families.Conclusions: Providing a correct diagnosis for patients with visual impairment and hearing loss can be challenging for clinicians and their patients, but it can greatly improve clinical care and outcomes. We recommend an algorithm that includes multidisciplinary collaboration, careful clinical evaluation, strategic molecular testing, and consideration of a broad differential diagnosis.


Assuntos
Cegueira/diagnóstico , Surdez/diagnóstico , Marcadores Genéticos , Mutação , Síndromes de Usher/diagnóstico , Adolescente , Adulto , Cegueira/genética , Criança , Pré-Escolar , Surdez/genética , Diagnóstico Diferencial , Feminino , Seguimentos , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Síndromes de Usher/genética
20.
Genet Med ; 21(10): 2239-2247, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30894701

RESUMO

PURPOSE: Proper interpretation of genomic variants is critical to successful medical decision making based on genetic testing results. A fundamental prerequisite to accurate variant interpretation is the clear understanding of the clinical validity of gene-disease relationships. The Clinical Genome Resource (ClinGen) has developed a semiquantitative framework to assign clinical validity to gene-disease relationships. METHODS: The ClinGen Hearing Loss Gene Curation Expert Panel (HL GCEP) uses this framework to perform evidence-based curations of genes present on testing panels from 17 clinical laboratories in the Genetic Testing Registry. The HL GCEP curated and reviewed 142 genes and 164 gene-disease pairs, including 105 nonsyndromic and 59 syndromic forms of hearing loss. RESULTS: The final outcome included 82 Definitive (50%), 12 Strong (7%), 25 Moderate (15%), 32 Limited (20%), 10 Disputed (6%), and 3 Refuted (2%) classifications. The summary of each curation is date stamped with the HL GCEP approval, is live, and will be kept up-to-date on the ClinGen website ( https://search.clinicalgenome.org/kb/gene-validity ). CONCLUSION: This gene curation approach serves to optimize the clinical sensitivity of genetic testing while reducing the rate of uncertain or ambiguous test results caused by the interrogation of genes with insufficient evidence of a disease link.


Assuntos
Surdez/genética , Testes Genéticos/métodos , Perda Auditiva/genética , Curadoria de Dados/métodos , Bases de Dados Genéticas , Testes Genéticos/normas , Variação Genética , Genoma Humano , Genômica/métodos , Humanos , Mutação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...