Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 319: 137994, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36720415

RESUMO

Better processing techniques must be utilized widely due to the rising demand for honey. The most common honey processing techniques are applied to melissopalynomorphs to check the quality and quantity of valuable honey using microporous ultrafiltration membranes. It is essential to have the ability to selectively filter out sugars from honey using ultrafiltration. This study authenticated 24 honey samples using membrane reactors ultrafiltration protocol to describe the pollen spectrum of dominant vegetation. The purpose of this study was also to explore nutritional benefits as well as the active phytochemical constituents of honey samples. Honey samples were collected and labeled Acacia, Eucalyptus, and Ziziphus species based on plant resources provided by local beekeepers. A variety of honeybee flora was collected around the apiaries between 2020 and 2021. Honey analysis revealed that the pollen extraction of 24 bee foraging species belonging to 14 families. The honey membrane technology verified the identities of honey and nectar sources. Also, pollen identified using honey ultrafiltration membranes revealed dominant resources: Acacia spp. (69%), Eucalyptus spp. (52%) and Ziziphus spp. Honey filtration using a membrane technology classified 14 samples as unifloral, represented by six dominant pollen types. The absolute pollen count in the honey sample revealed that 58.33% (n = 14) belong to Maurizio's class I. Scanning ultrasculpturing showed diverse exine patterns: reticulate, psilate, scabrate-verrucate, scabrate-gemmate, granulate, perforate, microechinate, microreticulate, and regulate to fossulate for correct identification of honey pollen types. Honey ultrafiltration should be utilized to validate the botanical sources of honey and trace their biogeographic authenticity. Thus, it is imperative to look at the alternative useful method to identify the botanical origin of filtered honey. It is critical to separate honey from adulteration by a standardized protocol. Membrane technology has yielded significant outcomes in the purification of honey.


Assuntos
Eucalyptus , Mel , Abelhas , Animais , Mel/análise , Pólen/química , Plantas , Néctar de Plantas , Eucalyptus/química
2.
Chemosphere ; 311(Pt 2): 137103, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36347346

RESUMO

The excessive use of antibiotics and their ultimate routes to the environment have prompted the drug resistance, which is becoming a major ecological issue. In this work, we have evaluated the performance of quaternary ammonium poly (2, 6-dimethyl-1,4-phenylene oxide) and polyvinyl alcohol (QPPO/PVA) based anion exchange membrane against cefixime (a third generation cephalosporin antibiotic) present in hospital effluents. The membrane's surface morphology was studied through scanning electron microscopy. The optimization of experimental parameters through Response Surface Methodology helped to evaluate the inter parameter dependence and predict maximum uptake capacity (qe). The speculated value of qe (6.72 mg g-1) obtained through central composite design was close to the experimental value of 7.01 mg g-1 with percent relative error of 4.31%. Further, the evaluation of experimental data using isotherms (Langmuir and Freundlich) and kinetic models (pseudo-first-order and second-order) proposed that the interactions between cefixime and the membrane were physisorptive in nature. The intra-day and inter-day assays exhibited lower %RSD values of 0.4% (n = 5) and 0.3% (n = 5). Furthermore, a percentage recovery of 98.2% (n = 9) and limit of detection 1 × 10-5 µg mL-1 was observed. The chromatogram of the treated water samples presented only negligible amount of cefixime indicating a great potential of QPPO/PVA membrane for the removal of cefixime from real water samples. The membrane could be regenerated for three consecutive cycles without any prominent loss in efficiency.


Assuntos
Antibacterianos , Projetos de Pesquisa , Cefixima , Cinética , Ânions , Água , Adsorção
3.
Chemosphere ; 286(Pt 3): 131838, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34399260

RESUMO

In this study, Hospital wastewater was treated using a submerged aerobic fixed film (SAFF) reactor coupled with tubesettler in series. SAFF consisted of a column with an up-flow biofilter. The biological oxygen demand (BOD)5, chemical oxygen demand (COD), nitrate and phosphate were the chosen pollutants for evaluation. The pollutants removal efficiency was determined at varying organic loading rates and hydraulic retention time. The organic loading rate was varied between 0.25 and 1.25 kg COD m-3 d-1. The removal efficiency of SAFF and tubesettler combined was 75 % COD, 67 % BOD and 67 % phosphate, respectively. However, nitrate saw an increase in concentration by 25 %. SAFF contribution in the removal of COD, BOD5 and Phosphate was 48 %, 46 % and 29 %, respectively. While for accumulation of nitrate, it was responsible for 56%, respectively. Tubesettler performed better than SAFF with 52 %, 54 % and 69 % reduction of COD, BOD5 and phosphate, respectively. But in terms of nitrate, tubesettler was responsible for 44 % accumulation. The nutrient reduction decreased with an increase in the organic loading rate. Nitrification was observed in the SAFF and tubesettler, which indicated a well-aerated system. An anaerobic unit is required for completing the denitrification process and removing nitrogen from the effluent. The better performance of tubesettler over SAFF calls for necessitates extended retention time over design criteria. Further studies are beneficial to investigate the impact of pharmaceutical compounds on the efficiency of SAFF.


Assuntos
Reatores Biológicos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Hospitais , Nitrificação , Nitrogênio , Eliminação de Resíduos Líquidos
4.
Materials (Basel) ; 14(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34501033

RESUMO

A series of porous clay samples prepared at different pretreatment temperatures have been tested in a diffusion chamber. Diffusivity and permeability were examined in a temperature range from ambient to 900 °C. Gaseous mixtures of O2, CO2, and N2 have been applied, as these species are the relevant gases in the context of clay brick firing and similar thermochemical processes. Diffusive transport characteristics have been determined by means of the mean transport-pore model, and permeability has been evaluated by Darcy's law. CO2 diffusivity increased strongly with temperature, whereas O2 diffusion was limited to a certain level. It is proposed that one should consider CO2 surface diffusion in order to explain this phenomenon. The diffusion model was expanded and surface diffusion was included in the model equation. The results of the model fit reflected the important role of incorporated carbonates of the clay foundation in gas-phase (molecular or Knudsen) diffusivity. CO2 surface diffusion was observed to exhibit similar coefficients for two different investigated clays, and is therefore indicated as a property of natural clays. Permeability showed a progressive rise with temperature, in line with related literature.

5.
J Hazard Mater ; 416: 125879, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492819

RESUMO

In this study, we synthesized polystyrene coated persulfate polyacrylonitrile beads (PC-PSPANBs) to control persulfate (PS) release for targeted PAHs' degradation in a batch reactor. Initially, the persulfate release rate (ksr = 20.553 h-1) from PSPANBs was fast, but coating the PSPANBs with polystyrene controlled PS release rate (ksr= 2.841 h-1), nearly ten times slower than without coating. When Fe(II) activated PC-PSPANBs applied for 12 h degradation of acenaphthene (ACE), 2-methlynaphthalene (2-MN) and dibenzofuran (DBF), the optimum percent removal efficiencies (% R.Es) were as ACE (82.12%) > DBF (68.57%) > 2-MN (58.80%) and the optimum degradation rate constants (kobs) were found as ACE (11.348 h-1) > 2-MN (3.441 h-1) > DBF (1.101 h-1). The effect of SO42- and Cl- on ACE degradation showed that % R.E and kobs were enhanced with increasing anionic concentrations. The maximum % R.E was achieved for SO42- (76.24%) > Cl- (65.51%), but the highest kobs was in case of Cl- (1.536 h-1) > SO42- (0.510 h-1). The effectiveness of PS release longevity was also found because net degradations of ACE and DBF after first spiking were 12 mg L-1 and 16 mg L-1, while after second spiking were 18 mg L-1 and 10 mg L-1, respectively.


Assuntos
Cloretos , Poluentes Químicos da Água , Oxirredução , Poliestirenos , Sulfatos , Poluentes Químicos da Água/análise
6.
Polymers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451208

RESUMO

Plant-mediated synthesis of nanoparticles exhibits great potential to minimize the generation of chemical waste through the utilization of non-toxic precursors. In this research work, we report the synthesis of magnesium oxide (MgO) and cobalt oxide (Co3O4) nanoparticles through a green approach using Manilkara zapota leaves extract, their surface modification by polyaniline (PANI), and antifungal properties against Aspergillus niger. Textural and structural characterization of modified and unmodified metal oxide nanoparticles were evaluated using FT-IR, SEM, and XRD. The optimal conditions for inhibition of Aspergillus niger were achieved by varying nanoparticles' concentration and time exposure. Results demonstrate that PANI/MgO nanoparticles were superior in function relative to PANI/Co3O4 nanoparticles to control the growth rate of Aspergillus niger at optimal conditions (time exposure of 72 h and nanoparticles concentration of 24 mM). A percentage decrease of 73.2% and 65.1% in fungal growth was observed using PANI/MgO and PANI/Co3O4 nanoparticles, respectively, which was higher than the unmodified metal oxide nanoparticles (67.5% and 63.2%).

7.
Membranes (Basel) ; 11(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34436368

RESUMO

This article provides a comprehensive review of the recent progress in the application of advanced two-dimensional nanomaterials (2DNMs) in membranes fabrication and application for water purification. The membranes fouling, its types, and anti-fouling mechanisms of different 2DNMs containing membrane systems are also discussed. The developments in membrane synthesis and modification using 2DNMs, especially graphene and graphene family materials, carbon nanotubes (CNTs), MXenes, and others are critically reviewed. Further, the application potential of next-generation 2DNMs-based membranes in water/wastewater treatment systems is surveyed. Finally, the current problems and future opportunities of applying 2DNMs for anti-fouling membranes are also debated.

8.
ACS Omega ; 6(24): 15663-15673, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179610

RESUMO

A liquid fuel that produces no toxic exhaust could help reduce pollution, potentially in urban areas. In this study, a simulation was conducted using the AVL Boost platform, on the use of liquid nitrogen (LN2) in a four-stroke engine. This study is focused on engine performance using directly introduced LN2 and the analysis of related aspects (inlet, outlet, and in-cylinder pressure, temperature, conditions for LN2 evaporation, etc.) that indicate the possible potential for the development of a zero-emission direct injection internal evaporation (DI-IE) LN2 engine. AVL Boost software was uniquely customized to accommodate the simulations, as modeling with LN2 was not available in the standard features. Simulation results, including indicated mean effective pressure (IMEP), effective torque, and power, were compared with similarly sized diesel and gasoline engines running at speeds of up to 1000 rpm. The LN2 injection mass was matched with air intake to evaluate the optimal combination. The simulation results showed that the enthalpy of the aspirated air was sufficient to evaporate and expand the injected amount of LN2 in each cycle, generating the in-cylinder pressure for the power stroke. The IMEP of the LN2 engine was similar to internal combustion engines, and its indicated efficiency was about four times higher (56-62%). The air separation process was 44% efficient in producing the required LN2, making the overall efficiency about 31%.

9.
Chemosphere ; 281: 130828, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34023759

RESUMO

The global energy crisis has stimulated the development of various forms of green energy technology such as microbial fuel cells (MFCs) that can be applied synergistically and simultaneously toward wastewater treatment and bioenergy generation. This is because electricigens in wastewater can act as catalysts for destroying organic pollutants to produce bioelectricity through bacterial metabolism. In this review, the factors affecting energy production are discussed to help optimize MFC processes with respect to design (e.g., single, double, stacked, up-flow, sediment, photosynthetic, and microbial electrolysis cells) and operational conditions/parameters (e.g., cell potential, microorganisms, substrate (in wastewater), pH, temperature, salinity, external resistance, and shear stress). The significance of electron transfer mechanisms and microbial metabolism is also described to pursue the maximum generation of power by MFCs. Technically, the generation of power by MFCs is still a significant challenge for real-world applications due to the difficulties in balancing between harvesting efficiency and upscaling of the system. This review summarizes various techniques used for MFC-based energy harvesting systems. This study aims to help narrow such gaps in their practical applications. Further, it is also expected to give insights into the upscaling of MFC technology while assisting environmental scientists to gain a better understanding on this energy harvesting approach.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , Eletrólise , Tecnologia , Águas Residuárias
10.
Artigo em Inglês | MEDLINE | ID: mdl-33419309

RESUMO

A class of intractable bio accumulative halogenated compounds polybrominated diphenyl ethers (PBDEs) was studied. Specifically, PBDEs and dechloran plus (DP) contamination in wheat and the assaulted environment-agricultural soil and dust-from metropolitan cities of Pakistan was the focus. The exposure of brominated flame retardants (BFRs) to humans, their probable toxicological impact on health, source apportionment, and the spatial tendency of BFRs were studied. Chromatographic analysis was performed, and concentrations (ng g-1) of ΣPBDE and ΣDP in soil, dust, and cereal crops were estimated in a range from 0.63 to 31.70 n.d. to 6.32 and n.d. to 3.47, respectively, and 0.11 to 7.05, n.d. to 4.56 and 0.05 to 4.95, respectively. Data analysis of source apportionment reflected that the existence of solid and e-waste sites, long-range transport, urban and industrial fraction can be the potential source of PBDE and DP pollution. Moreover, potential hazardous risks to human health across the study area via the dietary intake of cereal foods were deemed trifling, and were gauged on the basis of existing toxicological data.


Assuntos
Dieta , Retardadores de Chama , Contaminação de Alimentos , Éteres Difenil Halogenados , Cidades , Ingestão de Alimentos , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Humanos , Paquistão , Medição de Risco , Triticum
11.
Environ Int ; 134: 105291, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730999

RESUMO

With rapid increases in population and urbanization, uncontrolled municipal solid waste (MSW) is a threat to public health and environmental safety. In this study, we explore its generation, treatment, and characteristics of physical/chemical composition and assess the potential of MSW as a renewable energy source in Lahore, the second largest city in Pakistan. Based on the average generation rate of MSW (i.e., 0.65 kg/capita/day), the daily production of MSW in this city would reach 7150 tons/day. However, its disposal in a safely engineered way has been restricted due to the lack of: (a) pre-planning, (b) infrastructure, (c) political will, and (d) public awareness. Various samples of MSW considering socio-economic structure were collected. The physical components of MSW in Lahore were found to be in the descending order of biodegradable, nylon plastic bags, textile, diaper, and paper. The inductively coupled plasma optical emission spectroscopy (ICP-OES) technique was used to determine the heavy metal content and leachability of the MSW components to check for the environmental contamination risk. The proximate and ultimate analysis of this MSW was also carried out along with its heating values. The average high heating value of MSW was measured as 14,490 kJ kg-1. Energy recovery potential of 48 MW was assessed further from 2000 tons of MSW/day. The results of this study should be helpful for policy makers to establish a MSW management strategy for the potential renewable energy alternative.


Assuntos
Resíduos Sólidos , Cidades , Paquistão , Eliminação de Resíduos , Energia Renovável
12.
Materials (Basel) ; 12(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618854

RESUMO

This study aims to investigate the physical and chemical characterization of six fly ash samples obtained from different municipal solid waste incinerators (MSWIs), namely grate furnaces, rotary kiln, and fluidized bed reactor, to determine their potential for CO2 and thermochemical energy storage (TCES). Representative samples were characterized via simultaneous thermal analysis (STA) in different atmospheres, i.e., N2, air, H2O, CO2, and H2O/CO2, to identify fly ash samples that can meet the minimum requirements, i.e., charging, discharging, and cycling stability, for its consideration as TCES and CO2-storage materials and to determine their energy contents. Furthermore, other techniques, such as inductively coupled plasma optical emission spectroscopy, X-ray fluorescence (XRF) spectrometry, X-ray diffraction (XRD), scanning electron microscopy, leachability tests, specific surface area measurement based on the Brunauer-Emmett-Teller method, and particle-size distribution measurement, were performed. XRF analysis showed that calcium oxide is one of the main components in fly ash, which is a potentially suitable component for TCES systems. XRD results revealed information regarding the crystal structure and phases of various elements, including that of Ca. The STA measurements showed that the samples can store thermal heat with energy contents of 50-394 kJ/kg (charging step). For one fly ash sample obtained from a grate furnace, the release of the stored thermal heat under the selected experimental conditions (discharging step) was demonstrated. The cycling stability tests were conducted thrice, and they were successful for the selected sample. One fly ash sample could store CO2 with a storage capacity of 27 kg CO2/ton based on results obtained under the selected experimental conditions in STA. Samples from rotary kiln and fluidized bed were heated up to 1150 °C in an N2 atmosphere, resulting in complete melting of samples in crucibles; however, other samples obtained from grate furnaces formed compacted powders after undergoing the same thermal treatment in STA. Samples from different grate furnaces showed similarities in their chemical and physical characterization. The leachability test according to the standard (EN 12457-4 (2002)) using water in a ratio of 10 L/S and showed that the leachate of heavy metals is below the maximum permissible values for nonhazardous materials (except for Pb), excluding the fly ash sample obtained using fluidized bed technology. The leachate contents of Cd and Mn in the fly ash samples obtained from the rotary kiln were higher than those in other samples. Characterization performed herein helped in determining the suitable fly ash samples that can be considered as potential CO2-storage and TCES materials.

13.
Materials (Basel) ; 12(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438623

RESUMO

European solid waste incinerator plants still primarily use grate furnace technology, although circulating fluidized bed (CFB) technology is steadily expanding. Therefore, few investigations have reported on the environmental assessment of fly ash from fluidized incinerators. This research project aims to integrate information on fly ash derived from the combustion of municipal solid waste (FA1) and biomass (FA2) in fluidized bed incinerator facilities. Fly ash samples were comparatively analyzed by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), and inductively coupled plasma optical emission spectroscopy (ICP-OES) to study the mineralogy, morphology, total heavy metal content, and leaching behavior, respectively. The analysis revealed that the two types of fly ash differ in their characteristics and leaching behavior. The concentration of most of the heavy metals in both is low compared to the literature values, but higher than the regulatory limits for use as a soil conditioner, whereas the high contents of Fe, Cu, and Al suggest good potential for metal recovery. The leaching ability of most elements is within the inert waste category, except for Hg, which is slightly above the non-hazardous waste limit.

14.
Sci Total Environ ; 688: 56-64, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31229828

RESUMO

Anode potential is a critical factor in the biodegradation of organics in bioelectrochemical systems (BESs), but research on these systems with complex recalcitrant co-substrates at set anode potentials is scarce. In this study, carbamazepine (CBZ) biodegradation in a BES was examined over a wide range of set anode potentials (-200 to +600 mV vs Ag/AgCl). Current generation and current densities were improved with the increase in positive anode potentials. However, at a negative potential (-200 mV), current generation was higher as compared to that for +000 and +200 mV. The highest CBZ degradation (84%) and TOC removal efficiency (70%) were achieved at +400 mV. At +600 mV, a decrease in CBZ degradation was observed, which can be attributed to a low number of active bacteria and a poor ability to adapt to high voltage. This study signified that BESs operated at optimum anode potentials could be used for enhancing the biodegradation of complex and recalcitrant contaminants in the environment.


Assuntos
Biodegradação Ambiental , Fontes de Energia Bioelétrica/microbiologia , Carbamazepina/metabolismo , Bactérias/metabolismo , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...