Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172536

RESUMO

BACKGROUND: The role of immune cells in collagen degradation within the tumor microenvironment (TME) is unclear. Immune cells, particularly tumor-infiltrating lymphocytes (TILs), are known to alter the extracellular matrix, affecting cancer progression and patient survival. However, the quantitative evaluation of the immune modulatory impact on collagen architecture within the TME remains limited. METHODS: We introduce CollaTIL, a computational pathology method that quantitatively characterizes the immune-collagen relationship within the TME of gynecologic cancers, including high-grade serous ovarian (HGSOC), cervical squamous cell carcinoma (CSCC), and endometrial carcinomas. CollaTIL aims to investigate immune modulatory impact on collagen architecture within the TME, aiming to uncover the interplay between the immune system and tumor progression. RESULTS: We observe that an increased immune infiltrate is associated with chaotic collagen architecture and higher entropy, while immune sparse TME exhibits ordered collagen and lower entropy. Importantly, CollaTIL-associated features that stratify disease risk are linked with gene signatures corresponding to TCA-Cycle in CSCC, and amino acid metabolism, and macrophages in HGSOC. CONCLUSIONS: CollaTIL uncovers a relationship between immune infiltration and collagen structure in the TME of gynecologic cancers. Integrating CollaTIL with genomic analysis offers promising opportunities for future therapeutic strategies and enhanced prognostic assessments in gynecologic oncology.


The role of cells that are part of our immune system in altering the structure of the protein collagen within cancers is not fully understood, particularly within cancers that affect women such as ovarian, cervical and uterine cancers. Here, we developed a computer-based method called CollaTIL to explore how immune cells influence collagen in these tumors and affect their growth. We found that a higher presence of immune cells leads to less organized collagen in the tumor. Conversely, when there are fewer immune cells, the collagen tends to be more structured. Additionally, CollaTIL identifies patterns that predict patient outcomes in these cancers. These findings not only enhance our understanding of tumor biology but also may be useful in helping clinicians to predict which patients are at risk of their disease progressing.

2.
Res Sq ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234757

RESUMO

Endometrial cancer (EC) disproportionately affects African American (AA) women in terms of progression and death. In our study, we sought to employ computerized image and bioinformatic analysis to tease out morphologic and molecular differences in EC between AA and European-American (EA) populations. We identified the differences in immune cell spatial patterns between AA and EA populations with markers of tumor biology, including histologic and molecular subtypes. The models performed best when they were trained and validated using data from the same population. Unsupervised clustering revealed a distinct association between immune cell features and known molecular subtypes of endometrial cancer that varied between AA and EA populations. Our genomic analysis revealed two distinct and novel gene sets with mutations associated with improved prognosis in AA and EA patients. Our study findings suggest the need for population-specific risk prediction models for women with endometrial cancer.

3.
Sci Adv ; 8(22): eabn3966, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35648850

RESUMO

Immune checkpoint inhibitors (ICIs) show prominent clinical activity across multiple advanced tumors. However, less than half of patients respond even after molecule-based selection. Thus, improved biomarkers are required. In this study, we use an image analysis to capture morphologic attributes relating to the spatial interaction and architecture of tumor cells and tumor-infiltrating lymphocytes (TILs) from digitized H&E images. We evaluate the association of image features with progression-free (PFS) and overall survival in non-small cell lung cancer (NSCLC) (N = 187) and gynecological cancer (N = 39) patients treated with ICIs. We demonstrated that the classifier trained with NSCLC alone was associated with PFS in independent NSCLC cohorts and also in gynecological cancer. The classifier was also associated with clinical outcome independent of clinical factors. Moreover, the classifier was associated with PFS even with low PD-L1 expression. These findings suggest that image analysis can be used to predict clinical end points in patients receiving ICI.

4.
Eur Heart J ; 42(24): 2356-2369, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33982079

RESUMO

AIM: Allograft rejection is a serious concern in heart transplant medicine. Though endomyocardial biopsy with histological grading is the diagnostic standard for rejection, poor inter-pathologist agreement creates significant clinical uncertainty. The aim of this investigation is to demonstrate that cellular rejection grades generated via computational histological analysis are on-par with those provided by expert pathologists. METHODS AND RESULTS: The study cohort consisted of 2472 endomyocardial biopsy slides originating from three major US transplant centres. The 'Computer-Assisted Cardiac Histologic Evaluation (CACHE)-Grader' pipeline was trained using an interpretable, biologically inspired, 'hand-crafted' feature extraction approach. From a menu of 154 quantitative histological features relating the density and orientation of lymphocytes, myocytes, and stroma, a model was developed to reproduce the 4-grade clinical standard for cellular rejection diagnosis. CACHE-grader interpretations were compared with independent pathologists and the 'grade of record', testing for non-inferiority (δ = 6%). Study pathologists achieved a 60.7% agreement [95% confidence interval (CI): 55.2-66.0%] with the grade of record, and pair-wise agreement among all human graders was 61.5% (95% CI: 57.0-65.8%). The CACHE-Grader met the threshold for non-inferiority, achieving a 65.9% agreement (95% CI: 63.4-68.3%) with the grade of record and a 62.6% agreement (95% CI: 60.3-64.8%) with all human graders. The CACHE-Grader demonstrated nearly identical performance in internal and external validation sets (66.1% vs. 65.8%), resilience to inter-centre variations in tissue processing/digitization, and superior sensitivity for high-grade rejection (74.4% vs. 39.5%, P < 0.001). CONCLUSION: These results show that the CACHE-grader pipeline, derived using intuitive morphological features, can provide expert-quality rejection grading, performing within the range of inter-grader variability seen among human pathologists.


Assuntos
Tomada de Decisão Clínica , Transplante de Coração , Aloenxertos , Biópsia , Rejeição de Enxerto , Humanos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...