Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2408346121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968117

RESUMO

Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early ß-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of ß-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in ß-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any ß-catenin transcriptional activity as measured by ß-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in ß-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.


Assuntos
Padronização Corporal , Peptídeos e Proteínas de Sinalização Intercelular , Transdução de Sinais , Proteínas de Xenopus , beta Catenina , Animais , Padronização Corporal/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , beta Catenina/metabolismo , beta Catenina/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Xenopus laevis/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Gastrulação , Proteína Nodal/metabolismo , Proteína Nodal/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia , Organizadores Embrionários/metabolismo , Glicoproteínas
2.
Heliyon ; 10(11): e32243, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947477

RESUMO

The Wnt signaling pathway is one of the most ancient and pivotal signaling cascades, governing diverse processes in development and cancer regulation. Within the realm of cancer treatment, genistein emerges as a promising candidate due to its multifaceted modulation of various signaling pathways, including the Wnt pathway. Despite promising preclinical studies, the precise mechanisms underlying genistein's therapeutic effects via Wnt modulation remain elusive. In this study, we unveil novel insights into the therapeutic mechanisms of genistein by elucidating its inhibitory effects on Wnt signaling through macropinocytosis. Additionally, we demonstrate its capability to curtail cell growth, proliferation, and lysosomal activity in the SW480 colon adenocarcinoma cell model. Furthermore, our investigation extends to the embryonic context, where genistein influences gene regulatory networks governed by endogenous Wnt pathways. Our findings shed light on the intricate interplay between genistein, Wnt signaling, membrane trafficking, and gene regulation, paving the way for further exploration of genistein's therapeutic potential in cancer treatment strategies.

3.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713004

RESUMO

Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the ß-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis. Ouabain blocks macropinocytosis, which is an essential step in Wnt signaling, probably explaining the strong effects of Ouabain on this pathway. In Xenopus embryos, brief Ouabain treatment at the 32-cell stage, critical for the earliest Wnt signal in development-inhibited brains, could be reversed by treatment with Lithium chloride, a Wnt mimic. Inhibiting membrane trafficking may provide a way of targeting Wnt-driven cancers.


Assuntos
Neoplasias do Colo , Pinocitose , ATPase Trocadora de Sódio-Potássio , Via de Sinalização Wnt , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/etiologia , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Xenopus
4.
Bioessays ; 46(1): e2300179, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37983969

RESUMO

Fertilization triggers cytoplasmic movements in the frog egg that lead in mysterious ways to the stabilization of ß-catenin on the dorsal side of the embryo. The novel Huluwa (Hwa) transmembrane protein, identified in China, is translated specifically in the dorsal side, acting as an egg cytoplasmic determinant essential for ß-catenin stabilization. The Wnt signaling pathway requires macropinocytosis and the sequestration inside multivesicular bodies (MVBs, the precursors of endolysosomes) of Axin1 and Glycogen Synthase Kinase 3 (GSK3) that normally destroy ß-catenin. In Xenopus, the Wnt-like activity of GSK3 inhibitors and of Hwa mRNA can be blocked by brief treatment with inhibitors of membrane trafficking or lysosomes at the 32-cell stage. In dorsal blastomeres, lysosomal cathepsin is activated and intriguing MVBs surrounded by electron dense vesicles are formed at the 64-cell stage. We conclude that membrane trafficking and lysosomal activity are critically important for the earliest asymmetries in vertebrate embryonic development.


Assuntos
Quinase 3 da Glicogênio Sintase , beta Catenina , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Xenopus laevis/genética
5.
Cells Dev ; : 203897, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38109998

RESUMO

Neural induction by cell-cell signaling was discovered a century ago by the organizer transplantations of Spemann and Mangold in amphibians. Spemann later found that early dorsal blastopore lips induced heads and late organizers trunk-tail structures. Identifying region-specific organizer signals has been a driving force in the progress of animal biology. Head induction in the absence of trunk is designated archencephalic differentiation. Two specific head inducers, Cerberus and Insulin-like growth factors (IGFs), that induce archencephalic brain but not trunk-tail structures have been described previously. However, whether these two signals interact with each other had not been studied to date and was the purpose of the present investigation. It was found that Cerberus, a multivalent growth factor antagonist that inhibits Nodal, BMP and Wnt signals, strongly cooperated with IGF2, a growth factor that provides a positive signal through tyrosine kinase IGF receptors that activate MAPK and other pathways. The ectopic archencephalic structures induced by the combination of Cerberus and IGF2 are of higher frequency and larger than either one alone. They contain brain, a cyclopic eye and multiple olfactory placodes, without trace of trunk structures such as notochord or somites. A dominant-negative secreted IGF receptor 1 blocked Cerberus activity, indicating that endogenous IGF signals are required for ectopic brain formation. In a sensitized embryonic system, in which embryos were depleted of ß-catenin, IGF2 did not by itself induce neural tissue while in combination with Cerberus it greatly enhanced formation of circular brain structures expressing the anterior markers Otx2 and Rx2a, but not spinal cord or notochord markers. The main conclusion of this work is that IGF provides a positive signal initially uniformly expressed throughout the embryo that potentiates the effect of an organizer-specific negative signal mediated by Cerberus. The results are discussed in the context of the history of neural induction.

6.
Elife ; 122023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902809

RESUMO

Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here, we show that a macropinocytosis activator, the tumor promoter phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.


Assuntos
Carcinógenos , Neoplasias , Feminino , Gravidez , Humanos , Animais , Camundongos , Via de Sinalização Wnt , Quinase 3 da Glicogênio Sintase , Ésteres de Forbol , Ésteres
7.
iScience ; 26(10): 108075, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860772

RESUMO

Activation of Wnt signaling triggers macropinocytosis and drives many tumors. We now report that the exogenous addition of the second messenger lipid sn-1,2 DAG to the culture medium rapidly induces macropinocytosis. This is accompanied by potentiation of the effects of added Wnt3a recombinant protein or the glycogen synthase kinase 3 (GSK3) inhibitor lithium chloride (LiCl, which mimics Wnt signaling) in luciferase transcriptional reporter assays. In a colorectal carcinoma cell line in which mutation of adenomatous polyposis coli (APC) causes constitutive Wnt signaling, DAG addition increased levels of nuclear ß-catenin, and this increase was partially inhibited by an inhibitor of macropinocytosis. DAG also expanded multivesicular bodies marked by the tetraspan protein CD63. In an in vivo situation, microinjection of DAG induced Wnt-like twinned body axes when co-injected with small amounts of LiCl into Xenopus embryos. These results suggest that the DAG second messenger plays a role in Wnt-driven cancer progression.

8.
Mol Oncol ; 17(11): 2314-2336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37699867

RESUMO

Hepatocellular carcinoma (HCC) is largely associated with aberrant activation of Wnt/ß-catenin signaling. Nevertheless, how membrane lipid composition is altered in HCC cells with abnormal Wnt signaling remains elusive. Here, by exploiting comprehensive lipidome profiling, we unravel the membrane lipid composition of six different HCC cell lines with mutations in components of Wnt/ß-catenin signaling, leading to differences in their endogenous signaling activity. Among the differentially regulated lipids are diacylglycerol (DAG) and ceramide, which were downregulated at the membrane of HCC cells after Wnt3a treatment. DAG and ceramide enhanced Wnt/ß-catenin signaling by inducing caveolin-mediated endocytosis of the canonical Wnt-receptor complex, while their depletion suppressed the signaling activity along with a reduction of caveolin-mediated endocytosis in SNU475 and HepG2 cells. Moreover, depletion of DAG and ceramide significantly impeded the proliferation, tumor growth, and in vivo migration capacity of SNU475 and HepG2 cells. This study, by pioneering plasma membrane lipidome profiling in HCC cells, exhibits the remarkable potential of lipids to correct dysregulated signaling pathways in cancer and stop abnormal tumor growth.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Caveolinas , Linhagem Celular Tumoral , Proliferação de Células/genética , Ceramidas , Diglicerídeos , Lipidômica , Neoplasias Hepáticas/patologia , Via de Sinalização Wnt
9.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37333286

RESUMO

Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here we show that a macropinocytosis activator, the tumor promoter Phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.

10.
Mol Neurobiol ; 60(5): 2486-2506, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36670270

RESUMO

Non-alcoholic fatty liver disease (NAFLD) includes a range of liver conditions ranging from excess fat accumulation to liver failure. NAFLD is strongly associated with high-fat diet (HFD) consumption that constitutes a metabolic risk factor. While HFD has been elucidated concerning its several systemic effects, there is little information about its influence on the brain at the molecular level. Here, by using a high-fat diet (HFD)-feeding of adult zebrafish, we first reveal that excess fat uptake results in weight gain and fatty liver. Prolonged exposure to HFD induces a significant increase in the expression of pro-inflammation, apoptosis, and proliferation markers in the liver and brain tissues. Immunofluorescence analyses of the brain tissues disclose stimulation of apoptosis and widespread activation of glial cell response. Moreover, glial activation is accompanied by an initial decrease in the number of neurons and their subsequent replacement in the olfactory bulb and the telencephalon. Long-term consumption of HFD causes activation of Wnt/ß-catenin signaling in the brain tissues. Finally, fish fed an HFD induces anxiety, and aggressiveness and increases locomotor activity. Thus, HFD feeding leads to a non-traumatic brain injury and stimulates a regenerative response. The activation mechanisms of a regeneration response in the brain can be exploited to fight obesity and recover from non-traumatic injuries.


Assuntos
Lesões Encefálicas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Peixe-Zebra , Dieta Hiperlipídica/efeitos adversos , Lesões Encefálicas/metabolismo , Fígado/metabolismo , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL
11.
Membranes (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34832073

RESUMO

Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.

12.
Front Cell Dev Biol ; 9: 639779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458250

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive, chemo resistant neoplasm with poor prognosis and limited treatment options. Exploring activated pathways upon drug treatment can be used to discover more effective anticancer agents to overcome therapy resistance and enhance therapeutic outcomes for patients with advanced HCC. Human tumor-derived cell lines recapitulate HCC diversity and are widely used for studying mechanisms that drive drug resistance in HCC. In this study, we show that regorafenib treatment activates Wnt/ß-catenin signaling only in hepatoblast-like HCC cell lines and induces enrichment of markers associated with hepatic stem/progenitor cells. Moreover, activation of Wnt/ß-catenin signaling via Wnt3a/R-Spo1 treatment protects these cells from regorafenib induced apoptosis. On the other hand, regorafenib resistant cells established by long-term regorafenib treatment demonstrate diminished Wnt/ß-catenin signaling activity while TGF-ß signaling activity of these cells is significantly enhanced. Regorafenib resistant cells (RRCs) also show increased expression of several mesenchymal genes along with an induction of CD24 and CD133 cancer stem cell markers. Moreover, regorafenib resistant cells also exhibit significantly augmented in vitro and in vivo migration capacity which could be reversed by TGF-ß type 1 receptor (TGFb -R1) inhibition. When combined with regorafenib treatment, TGFß-R1 inhibition also significantly decreased colony formation ability and augmented cell death in resistant spheroids. Importantly, when we knocked down TGFß-R1 using a lentiviral plasmid, regorafenib resistant cells entered senescence indicating that this pathway is important for their survival. Treatment of RRCs with TGFß-R1 inhibitor and regorafenib significantly abolished pSTAT3, pSMAD2 and pERK (44/42) expression suggesting the involvement of both canonical and non-canonical pathways. In conclusion, our data suggest that HCC tumors with aberrant activation in the Wnt/ß-catenin pathway, might have higher intrinsic regorafenib resistance and the inhibition of this pathway along with regorafenib administration might increase regorafenib-induced cell death in combinational therapies. However, to resolve acquired regorafenib resistance developed in HCC patients, the combined use of TGF-ß pathway inhibitors and Regorafenib constitute a promising approach that can increase regorafenib sensitization and prevent tumor recurrence.

13.
Front Cell Dev Biol ; 9: 671218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124053

RESUMO

Wnt proteins are a family of hydrophobic cysteine-rich secreted glycoproteins that regulate a gamut of physiological processes involved in embryonic development and tissue homeostasis. Wnt ligands are post-translationally lipidated in the endoplasmic reticulum (ER), a step essential for its membrane targeting, association with lipid domains, secretion and interaction with receptors. However, at which residue(s) Wnts are lipidated remains an open question. Initially it was proposed that Wnts are lipid-modified at their conserved cysteine and serine residues (C77 and S209 in mWnt3a), and mutations in either residue impedes its secretion and activity. Conversely, some studies suggested that serine is the only lipidated residue in Wnts, and substitution of serine with alanine leads to retention of Wnts in the ER. In this work, we investigate whether in zebrafish neural tissues Wnt3 is lipidated at one or both conserved residues. To this end, we substitute the homologous cysteine and serine residues of zebrafish Wnt3 with alanine (C80A and S212A) and investigate their influence on Wnt3 membrane organization, secretion, interaction and signaling activity. Collectively, our results indicate that Wnt3 is lipid modified at its C80 and S212 residues. Further, we find that lipid addition at either C80 or S212 is sufficient for its secretion and membrane organization, while the lipid modification at S212 is indispensable for receptor interaction and signaling.

14.
Cell Signal ; 82: 109972, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33684507

RESUMO

Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a newly defined stem cell marker in endoderm-derived organs such as the small intestine, colon and pancreas. Recently, LGR5 was demonstrated to be an important factor in liver regeneration and stem cell maintenance. Moreover, LGR5 expression is highly up-regulated in various cancers including hepatocellular carcinoma. Herein, we demonstrate that LGR5 expression is specifically observed in certain subset of HCC cell lines with "hepatoblast-like" appearance, characterized by the expression of liver fetal/progenitor markers. Notably, the activation of the canonical Wnt pathway significantly increases the expression of LGR5 in this subset of cell lines, whereas it does not cause any induction of LGR5 expression in mesenchymal like cell lines SNU-475 and SNU-449. Furthermore, we showed that treatment of the hepatoblast-like HCC cell lines HuH-7 and Hep3B with LGR5 ligand R-Spo1 significantly amplifies the induction of LGR5 expression, the phosphorylation of LRP6 and ß-catenin resulting in enhanced TCF/LEF activity either alone or in combination with Wnt3a. Consistently, the silencing of the LGR5 gene attenuates the co-stimulatory effect of R-Spo1/Wnt3a on TCF/LEF activity while overexpression of LGR5 enhances it. On the contrary, overexpression of LGR5 does not change TCF/LEF activity induced by R-Spo1/Wnt3a in mesenchymal-like HCC line, SNU-449. Importantly, LGR5-overexpressing cells have increased expression of several Wnt target genes and stemness-related genes including EpCAM and CK19 upon R-Spo1/Wnt3a treatment. LGR5-overexpressing cells also have increased spheroid forming, migration and invasion abilities and stimulation with R-Spo1/Wnt3a augments these abilities of LGR5-overexpressing cells. In addition, ectopic overexpression of LGR5 significantly increases cell proliferation rate independent of R-Spo1/Wnt3a stimulation. Moreover, in vitro tubulogenesis assay demonstrates that treatment with R-Spo1/Wnt3a enhances the sprouting of capillary tubules in only LGR5-overexpressing cells. Finally, R-Spo1/Wnt3a significantly promotes dissemination of LGR5-overexpressing cells in vivo in a zebrafish xenograft model. Our study unravels a tumor-promoting role for LGR5 through activation of canonical Wnt/ß-catenin signaling in the hepatoblast-like HCCs. In conclusion, our results suggest that LGR5/R-Spo1/Wnt3a generates an axis that mediates the acquisition of aggressive phenotype specifically in hepatoblast-like subset of HCCs and might represent a valuable target for treatment of HCC tumors with aberrant activation of Wnt/ß-catenin pathway.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas , Receptores Acoplados a Proteínas G/fisiologia , Proteína Wnt3A/fisiologia , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Peixe-Zebra
15.
Front Cell Dev Biol ; 9: 631623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585487

RESUMO

Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.

16.
Biomolecules ; 11(1)2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466728

RESUMO

Wnt/ß-catenin signaling controls many biological processes for the generation and sustainability of proper tissue size, organization and function during development and homeostasis. Consequently, mutations in the Wnt pathway components and modulators cause diseases, including genetic disorders and cancers. Targeted treatment of pathway-associated diseases entails detailed understanding of the regulatory mechanisms that fine-tune Wnt signaling. Here, we identify the neurotrophin receptor-associated death domain (Nradd), a homolog of p75 neurotrophin receptor (p75NTR), as a negative regulator of Wnt/ß-catenin signaling in zebrafish embryos and in mammalian cells. Nradd significantly suppresses Wnt8-mediated patterning of the mesoderm and neuroectoderm during zebrafish gastrulation. Nradd is localized at the plasma membrane, physically interacts with the Wnt receptor complex and enhances apoptosis in cooperation with Wnt/ß-catenin signaling. Our functional analyses indicate that the N-glycosylated N-terminus and the death domain-containing C-terminus regions are necessary for both the inhibition of Wnt signaling and apoptosis. Finally, Nradd can induce apoptosis in mammalian cells. Thus, Nradd regulates cell death as a modifier of Wnt/ß-catenin signaling during development.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Retroalimentação Fisiológica , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Membrana Celular/metabolismo , Ectoderma/embriologia , Ectoderma/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/embriologia , Mesoderma/metabolismo , Ligação Proteica , Transcrição Gênica , Via de Sinalização Wnt/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
Front Cell Dev Biol ; 7: 281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803740

RESUMO

While the lateral organization of plasma membrane components has been shown to control binding of Wnt ligands to their receptors preferentially in the ordered membrane domains, the role of posttranslational lipid modification of Wnt on this selective binding is unknown. Here, we identify that the canonical Wnt is presumably acylated by palmitic acid, a saturated 16-carbon fatty acid, at a conserved serine residue. Acylation of Wnt3 is dispensable for its secretion and binding to Fz8 while it is essential for Wnt3's proper binding and domain-like diffusion in the ordered membrane domains. We further unravel that non-palmitoylated Wnt3 is unable to activate Wnt/ß-catenin signaling either in zebrafish embryos or in mammalian cells. Based on these results, we propose that the lipidation of canonical Wnt, presumably by a saturated fatty acid, determines its competence in interacting with the receptors in the appropriate domains of the plasma membrane, ultimately keeping the signaling activity under control.

18.
FEBS J ; 284(15): 2513-2526, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28626941

RESUMO

While the cytosolic events of Wnt/ß-catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt-receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt-receptor complex. Moreover, Wnt/ß-catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann-Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity.


Assuntos
Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Receptores Wnt/agonistas , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteína Wnt3/metabolismo , Proteína Wnt3A/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Células CHO , Linhagem Celular Tumoral , Células Cultivadas , Cricetulus , Proteínas do Citoesqueleto/genética , Embrião não Mamífero/metabolismo , Genes Reporter , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/agonistas , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Receptores Wnt/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Wnt/genética , Proteína Wnt3/genética , Proteína Wnt3A/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA