Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Heliyon ; 10(7): e28449, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689961

RESUMO

Trametes villosa is a remarkable white-rot fungus (WRF) with the potential to be applied in lignocellulose conversion to obtain chemical compounds and biofuels. Lignocellulose breakdown by WRF is carried out through the secretion of oxidative and hydrolytic enzymes. Despite the existing knowledge about this process, the complete molecular mechanisms involved in the regulation of this metabolic system have not yet been elucidated. Therefore, in order to understand the genes and metabolic pathways regulated during lignocellulose degradation, the strain T. villosa CCMB561 was cultured in media with different carbon sources (lignin, sugarcane bagasse, and malt extract). Subsequently, biochemical assays and differential gene expression analysis by qPCR and high-throughput RNA sequencing were carried out. Our results revealed the ability of T. villosa CCMB561 to grow on lignin (AL medium) as the unique carbon source. An overexpression of Cytochrome P450 was detected in this medium, which may be associated with the lignin O-demethylation pathway. Clusters of up-regulated CAZymes-encoding genes were identified in lignin and sugarcane bagasse, revealing that T. villosa CCMB561 acts simultaneously in the depolymerization of lignin, cellulose, hemicellulose, and pectin. Furthermore, genes encoding nitroreductases and homogentisate-1,2-dioxygenase that act in the degradation of organic pollutants were up-regulated in the lignin medium. Altogether, these findings provide new insights into the mechanisms of lignocellulose degradation by T. villosa and confirm the ability of this fungal species to be applied in biorefineries and in the bioremediation of organic pollutants.

2.
J Chemother ; : 1-18, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711347

RESUMO

Chemotherapy-induced intestinal mucositis is a major side effect of cancer treatment. Statins are 3-hydroxy-3-methyl glutaryl coenzyme reductase inhibitors used to treat hypercholesterolemia and atherosclerotic diseases. Recent studies have demonstrated that atorvastatin (ATV) has antioxidant, anti-inflammatory, and resulting from the regulation of different molecular pathways. In the present study, we investigated the effects of ATV on intestinal homeostasis in 5-fluorouracil (5-FU)-induced mucositis. Our results showed that ATV protected the intestinal mucosa from epithelial damage caused by 5-FU mainly due to inflammatory infiltrate and intestinal permeability reduction, downregulation of inflammatory markers, such as Tlr4, MyD88, NF-κB, Tnf-a, Il1ß, and Il6 dose-dependent. ATV also improved epithelial barrier function by upregulating the mRNA transcript levels of mucin 2 (MUC2), and ZO-1 and occludin tight junction proteins. The results suggest that the ATV anti-inflammatory and protective effects on 5-FU-induced mice mucositis involve the inhibition of the TLR4/MYD88/NPRL3/NF-κB, iNos, and caspase 3.

3.
Front Microbiol ; 15: 1309160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680913

RESUMO

Introduction and objective: p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods: This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion: No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.

4.
Microorganisms ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674604

RESUMO

Multi-strain Limosilactobacillus (L.) fermentum is a potential probiotic with reported immunomodulatory properties. This study aimed to evaluate the composition, richness, and diversity of the gut microbiota in male and female rats after treatment with a multi-strain of L. fermentum at different doses. Thirty rats (fifteen male and fifteen female) were allocated into a control group (CTL), a group receiving L. fermentum at a dose of 108 CFU (Lf-108), and a group receiving L. fermentum at a dose of 1010 CFU (Lf-1010) for 13 weeks. Gut microbiota and serum cytokine levels were evaluated after L. fermentum treatment. Male CTL rats had a lower relative abundance of Bifidobacteriaceae and Prevotella and a lower alpha diversity than their female CTL counterparts (p < 0.05). In addition, male CTL rats had a higher Firmicutes/Bacteroidetes (F/B) ratio than female CTL rats (p < 0.05). In female rats, the administration of L. fermentum at 108 CFU decreased the relative abundance of Bifidobacteriaceae and Anaerobiospirillum and increased Lactobacillus (p < 0.05). In male rats, the administration of L. fermentum at 1010 CFU decreased the F/B ratio and increased Lachnospiraceae and the diversity of the gut microbiota (p < 0.05). The relative abundance of Lachnospiraceae and the alpha-diversity of gut microbiota were negatively correlated with serum levels of IL1ß (r = -0.44) and TNFα (r = -0.39), respectively. This study identified important changes in gut microbiota between male and female rats and showed that a lower dose of L. fermentum may have more beneficial effects on gut microbiota in females, while a higher dose may result in more beneficial effects on gut microbiota in male rats.

5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503568

RESUMO

AIMS: The purpose was to evaluate the antimicrobial activity of highly soluble polypyrrole (Hs-PPy), alone or combined with oxacillin, as well as its antibiofilm potential against methicillin-resistant Staphylococcus aureus strains. Furthermore, the in silico inhibitory mechanism in efflux pumps was also investigated. METHODS AND RESULTS: Ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and two reference strains were used. Antimicrobial activity was determined by broth microdilution, and the combination effect with oxacillin was evaluated by the checkerboard assay. The biofilm formation capacity of MRSA and the interference of Hs-PPy were evaluated. The inhibitory action of Hs-PPy on the efflux pump was evaluated in silico through molecular docking. Hs-PPy showed activity against the isolates, with inhibitory action between 62.5 and 125 µg ml-1 and bactericidal action at 62.5 µg ml-1, as well as synergism in association with oxacillin. The isolates ranged from moderate to strong biofilm producers, and Hs-PPy interfered with the formation of this structure, but not with mature biofilm. There was no in silico interaction with the efflux protein EmrD, the closest homolog to NorA. CONCLUSIONS: Hs-PPy interferes with biofilm formation by MRSA, has synergistic potential, and is an efflux pump inhibitor.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Polímeros/farmacologia , Pirróis/farmacologia , Simulação de Acoplamento Molecular , Oxacilina/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
6.
Artigo em Inglês | MEDLINE | ID: mdl-38539008

RESUMO

This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.

7.
Vet Res Commun ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546809

RESUMO

Escherichia coli (E. coli) are widely related to pyometra and cystitis in dogs, and these infections can occur simultaneously. The goal of this study was to determine genetic and pathogenic insights of 14 E. coli isolated simultaneously from pyometra content and bladder urine of seven bitches. To achieve this, in silico and in vitro comparative analyses were conducted. Whole-genome comparisons demonstrated that E. coli isolated from pyometra and urine of the same animal were predominantly genetic extraintestinal E. coli clones belonging to the same Sequence Type and phylogroup. The E. coli clones identified in this study included ST372, ST457, ST12, ST127, ST646, and ST961. Five isolates (35.7%) belonged to the ST12 complex. Except for two E. coli, all other isolates belonged to the B2 Clermont phylogroup. Interestingly, some genomes of E. coli from urine carried more virulence genes than those E. coli from pyometra. Both pyometra and urine E. coli isolates demonstrated a strong affinity for adhering to HeLa and T24 cells, with a low affinity for invading them. However, certain isolates from urine exhibited a greater tendency to adhere to T24 cells in qualitative and quantitative assays compared to isolates from pyometra. In conclusion, this study revealed the high genomic similarity between pyometra and urine E. coli isolates, as well as the virulent capacity of both to colonize endometrial and urothelial cells. The findings of this study underscore the importance of concurrently managing both infections clinically and could potentially contribute to future resources for the prevention of cystitis and pyometra.

8.
Res Vet Sci ; 166: 105106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086217

RESUMO

The clinical aspects and lineages involved in Extraintestinal pathogenic Escherichia coli (ExPEC) infections in dogs remain largely unknown. In this study, we investigated the antimicrobial resistance and molecular structures of ExPECs isolated from infected dogs in Brazil. Samples were obtained from dogs (n = 42) with suspected extraintestinal bacterial infections. Phylogroup B2 was predominant (65.1%). No association was observed between the site of infection, phylogroups, or virulence factors. Almost half of the isolates (44.2%) were MDR, and 20.9% were extended-spectrum ß-lactamase (ESBL)-positive. E. coli isolates that were resistant to fluoroquinolones (27.9%) were more likely to be MDR. The CTX-M-15 enzyme was predominant among the ESBL-producing strains, and seven sequence types were identified, including the high-risk clones ST44 and ST131. Single SNPs analysis confirmed the presence of two clonal transmissions. The present study showed a high frequency of ExPECs from phylogroup B2 infecting various sites and a high frequency of ESBL-producing strains that included STs frequently associated with human infection. This study also confirmed the nosocomial transmission of ESBL-producing E. coli, highlighting the need for further studies on the prevention and diagnosis of nosocomial infections in veterinary settings.


Assuntos
Doenças do Cão , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Cães , Humanos , Animais , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Hospitais Veterinários , Brasil/epidemiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia
9.
Microorganisms ; 11(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513009

RESUMO

Antimicrobial resistance is increasing despite new treatments being employed, so novel strategies are required to ensure that bacterial infections remain treatable. Bacteriophages (phages; bacteria viruses) have the potential to be used as natural antimicrobial methods to control bacterial pathogens such as Salmonella spp. A Salmonella phage, Wara, was isolated from environmental water samples at the Subaé River Basin, Salvador de Bahia, Brazil. The basin has environmental impacts in its main watercourses arising from the dumping of domestic and industrial effluents and agricultural and anthropological activities. The phage genome sequence was determined by Oxford Nanopore Technologies (ONT) MinION and Illumina HiSeq sequencing, and assembly was carried out by Racon (MinION) and Unicycler (Illumina, Illumina + MinION). The genome was annotated and compared to other Salmonella phages using various bioinformatics approaches. MinION DNA sequencing combined with Racon assembly gave the best complete genome sequence. Phylogenetic analysis revealed that Wara is a member of the Tequintavirus genus. A lack of lysogeny genes, antimicrobial resistance, and virulence genes indicated that Wara has therapeutic and biocontrol potential against Salmonella species in healthcare and agriculture.

10.
Antibiotics (Basel) ; 12(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37370358

RESUMO

Aeromonas veronii is a Gram-negative bacterial species that causes disease in fish and is nowadays increasingly recurrent in enteric infections of humans. This study was performed to characterize newly sequenced isolates by comparing them with complete genomes deposited at the NCBI (National Center for Biotechnology Information). Nine isolates from fish, environments, and humans from the São Francisco Valley (Petrolina, Pernambuco, Brazil) were sequenced and compared with complete genomes available in public databases to gain insight into taxonomic assignment and to better understand virulence and resistance profiles of this species within the One Health context. One local genome and four NCBI genomes were misidentified as A. veronii. A total of 239 virulence genes were identified in the local genomes, with most encoding adhesion, motility, and secretion systems. In total, 60 genes involved with resistance to 22 classes of antibiotics were identified in the genomes, including mcr-7 and cphA. The results suggest that the use of methods such as ANI is essential to avoid misclassification of the genomes. The virulence content of A. veronii from local isolates is similar to those complete genomes deposited at the NCBI. Genes encoding colistin resistance are widespread in the species, requiring greater attention for surveillance systems.

11.
Microlife ; 4: uqad029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324655

RESUMO

Bacterial extracellular vesicles (EVs) are natural lipidic nanoparticles implicated in intercellular communication. Although EV research focused mainly on pathogens, the interest in probiotic-derived EVs is now rising. One example is Propionibacterium freudenreichii, which produces EVs with anti-inflammatory effects on human epithelial cells. Our previous study with P. freudenreichii showed that EVs purified by size exclusion chromatography (SEC) displayed variations in protein content according to bacterial growth conditions. Considering these content variations, we hypothesized that a comparative proteomic analysis of EVs recovered in different conditions would elucidate whether a representative vesicular proteome existed, possibly providing a robust proteome dataset for further analysis. Therefore, P. freudenreichii was grown in two culture media, and EVs were purified by sucrose density gradient ultracentrifugation (UC). Microscopic and size characterization confirmed EV purification, while shotgun proteomics unveiled that they carried a diverse set of proteins. A comparative analysis of the protein content of UC- and SEC-derived EVs, isolated from cultures either in UF (cow milk ultrafiltrate medium) or YEL (laboratory yeast extract lactate medium), showed that EVs from all these conditions shared 308 proteins. This EV core proteome was notably enriched in proteins related to immunomodulation. Moreover, it showed distinctive features, including highly interacting proteins, compositional biases for some specific amino acids, and other biochemical parameters. Overall, this work broadens the toolset for the purification of P. freudenreichii-derived EVs, identifies a representative vesicular proteome, and enumerates conserved features in vesicular proteins. These results hold the potential for providing candidate biomarkers of purification quality, and insights into the mechanisms of EV biogenesis and cargo sorting.

12.
Comput Biol Med ; 159: 106941, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105111

RESUMO

Rotavirus (RV) and Norovirus (NV) are the main viral etiologic agents of acute gastroenteritis (AG), a serious pediatric condition associated with significant death rates and long-term complications. Anti-RV vaccination has been proved efficient in the reduction of severe AG worldwide, however, the available vaccines are all attenuated and have suboptimal efficiencies in developing countries, where AG leads to substantial disease burden. On the other hand, no NV vaccine has been licensed so far. Therefore, we used immunoinformatics tools to develop a multi-epitope vaccine (ChRNV22) to prevent severe AG by RV and NV. Epitopes were predicted against 17 prevalent genotypes of four structural proteins (NV's VP1, RV's VP4, VP6 and VP7), and then assembled in a chimeric protein, with two small adjuvant sequences (tetanus toxin P2 epitope and a conserved sequence of RV's enterotoxin, NSP4). Simulations of the immune response and interactions with immune receptors indicated the immunogenic properties of ChRNV22, including a Th1-biased response. In silico search for putative host-homologous, allergenic and toxic regions also indicated the vaccine safety. In summary, we developed a multi-epitope vaccine against different NV and RV genotypes that seems promising for the prevention of severe AG, which will be further assessed by in vivo tests.


Assuntos
Norovirus , Rotavirus , Vacinas , Criança , Humanos , Rotavirus/genética , Norovirus/genética , Epitopos
13.
Antibiotics (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978487

RESUMO

Intensive Care Units (ICU) usually provide an excellent environment for the selection of pathogens associated with hospital-acquired infections (HAI), leading to increased mortality and hospitalization costs. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of HAI in dogs worldwide, but the risk factors and dynamics of colonization by MRSP are largely unknown. This study aimed to evaluate the risk factors associated with the acquisition of MRSP in dogs admitted to an ICU, and to report the antimicrobial resistance profiles and genetic relatedness of MRSP isolates. Sterile swabs from the nostril, axilla, and rectum were collected daily during the hospitalization of 54 dogs. Samples were subjected to Mannitol Salt Agar, and colonies were identified by MALDI-ToF, polymerase chain reaction (PCR), and sequencing of the rpoB gene. Antimicrobial susceptibility testing and PCR detection of mecA were performed. Staphylococcus spp. was isolated from 94% of the dogs, and the most frequently isolated species was S. pseudintermedius (88.2%). Carriage of multidrug resistant (MDR) staphylococci was observed in 64.4% of the dogs, and approximately 39% had methicillin-resistant Staphylococcus sp. (MRS), of which 21.6% had MRSP and 1.9% had methicillin-resistant S. aureus (MRSA). The acquisition of MRSP during ICU hospitalization was associated with sex (female), age (>7 years), and dogs that had previously been treated with antimicrobials. Animals colonized by MRSP resistant to ≥9 antimicrobial classes had longer hospital stays than those colonized by other MRS strains. Among the 13 MRSP isolates that were subjected to whole-genome sequencing, ten were classified as ST71. A single nucleotide polymorphism (SNP) analysis revealed three clones, including one that was detected in infected dogs outside the ICU. This study indicates novel risk factors associated with colonization by MRSP. The detection of the same MRSP clone causing HAI outside the ICU reinforces the need for improved infection prevention and control practices at veterinary hospitals in general and at the ICU in particular.

14.
Sci Rep ; 13(1): 5147, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991089

RESUMO

Stingless bees are a diverse group with a relevant role in pollinating native species. Its diet is rich in carbohydrates and proteins, by collecting pollen and nectar supplies the development of its offspring. Fermentation of these products is associated with microorganisms in the colony. However, the composition of microorganisms that comprise this microbiome and its fundamental role in colony development is still unclear. To characterize the colonizing microorganisms of larval food in the brood cells of stingless bees Frieseomelitta varia, Melipona quadrifasciata, Melipona scutellaris, and Tetragonisca angustula, we have utilized molecular and culture-based techniques. Bacteria of the phyla Firmicutes, Proteobacteria, Actinobacteria, and fungi of the phyla Ascomycota, Basidiomycota, Mucoromycota, and Mortierellomycota were found. Diversity analysis showed that F. varia had a greater diversity of bacteria in its microbiota, and T. angustula had a greater diversity of fungi. The isolation technique allowed the identification of 189 bacteria and 75 fungi. In summary, this research showed bacteria and fungi associated with the species F. varia, M. quadrifasciata, M. scutellaris, and T. angustula, which may play an essential role in the survival of these organisms. Besides that, a biobank with bacteria and fungus isolates from LF of Brazilian stingless bees was created, which can be used for different studies and the prospection of biotechnology compounds.


Assuntos
Fungos , Leveduras , Abelhas , Animais , Larva , Brasil , Fungos/genética , Bactérias/genética
15.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992103

RESUMO

Caseous lymphadenitis is a chronic contagious disease that causes economic losses worldwide. Treatments are ineffective, thus demonstrating the importance of vaccination. In this study, rNanH and rPknG proteins from Corynebacterium pseudotuberculosis were associated with saponin or aluminum hydroxide adjuvants. Three experimental groups (10 animals each) were immunized with sterile 0.9% saline solution (G1), rNanH + rPknG + Saponin (G2), rNanH + rPknG + Al(OH)3 (G3). The mice received two vaccine doses 21 days apart. Animals were challenged 21 days after the last immunization and evaluated for 50 days, with endpoint criteria applied when needed. The total IgG production levels of the experimental groups increased significantly on day 42 when compared to the control (p < 0.05). When tested against rNanH, G2 had a better rate of anti-rNanH antibodies compared to G3. In the anti-rPknG ELISA, the levels of total IgG, IgG1, and IgG2a antibodies were higher in G2. The vaccines generated partial protection, with 40% of the animals surviving the challenge. The association of recombinant NanH and PknG proteins led to promising protection rates in mice, and although using different adjuvants did not interfere with the survival rate, it influenced the immune response generated by the vaccine formulations.

16.
Acta Trop ; 242: 106911, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965612

RESUMO

Staphylococcus pseudintermedius is a zoonotic pathogen responsible for several infectious diseases in pet animals, yet its pathogenic potential is not fully understood. Thus, this study aims to unravel the virulence profile of S. pseudintermedius from canine origin. Methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains were isolated from different infection sites and their genotypic and phenotypic features were compared to determine the clinical implications of MRSP and MSSP strains. Bacterial identification was performed using MALDI-TOF and 16S-rDNA sequencing. In addition, we used multilocus sequence typing (MLST) for strains' sequence type (ST) determination and phylogenetic relationship. The strains were screened for toxin genes, including cytotoxins (lukS, lukF), exfoliative toxin (siet), enterotoxins (sea, seb, sec, secCanine, sel, sem, and seq) and toxic shock syndrome toxin (tst-1). In vitro phenotypic analyses assessing antimicrobial susceptibility profile, biofilm formation ability, and expression of extracellular matrix components were performed. The investigated S. pseudintermedius strains belong to 17 unique ST, most of which were classified as ST71. MSSP and MRSP strains shared siet, lukS, and lukF virulence markers. Our findings showed that some MSSP strains also harbored sel, seq, and sem enterotoxin genes, suggesting a more diverse virulence profile. All MRSP strains and 77% of MSSP strains were classified as multidrug resistant (MDR). Moreover, all investigated S. pseudintermedius strains showed strong biofilm formation ability. In summary, our findings highlight the wide spread of highly virulent and drug-resistant zoonotic S. pseudintermedius strains, being a potential concern for One Health issues.


Assuntos
Doenças do Cão , Infecções Estafilocócicas , Cães , Animais , Meticilina/farmacologia , Resistência a Meticilina/genética , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Doenças do Cão/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
17.
Braz J Microbiol ; 54(2): 1203-1215, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36821043

RESUMO

Inflammatory bowel diseases (IBD) are gastrointestinal disorders characterized by a breakdown in intestinal homeostasis by inflammatory immune responses to luminal antigens. Novel strategies for ameliorating IBD have been proposed in many studies using animal models. Our group has demonstrated that administration of Lactococcus lactis NCDO 2118 can improve clinical parameters of colitis induced by oral administration of dextran sulphate sodium (DSS). However, it is not clear whether other strains of L. lactis can yield the same effect. The objective of present study was to analyze the effects of three different L. lactis strains (NCDO2118, IL1403 and MG1363) in the development of DSS-induced colitis in C57BL/6 mice. Acute colitis was induced in C57/BL6 mice by the administration of 2% DSS during 7 consecutive days. Body weight loss and shortening of colon length were observed in DSS-treated mice, and none of L. lactis strains had an impact in these clinical signs of colitis. On the other hand, all strains improved the global macroscopical disease index and prevented goblet cells depletion as well as the increase of intestinal permeability. TNF-α production was reduced in gut mucosa of L. lactis DSS-treated mice indicating a modulation of a critical pro-inflammatory response by all strains tested. However, only L. lactis NCDO2118 and MG1363 induced a higher frequency of CD11c+CD11b-CD103+ tolerogenic dendritic cells in lymphoid organs of mice at steady state. We conclude that all tested strains of L. lactis improved the clinical scores and parameters of colitis, which confirm their anti-inflammatory properties in this model of colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Lactococcus lactis , Animais , Camundongos , Lactococcus lactis/genética , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Doenças Inflamatórias Intestinais/induzido quimicamente , Imunidade , Modelos Animais de Doenças
18.
Probiotics Antimicrob Proteins ; 15(2): 424-440, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631616

RESUMO

Mucositis is defined as inflammatory and ulcerative lesions along of the gastrointestinal tract that leads to the imbalance of the intestinal microbiota. The use of compounds with action on the integrity of the intestinal epithelium and their microbiota may be a beneficial alternative for the prevention and/or treatment of mucositis. So, the aim of this study was to evaluate the effectiveness of the association of fructo-oligosaccharides (FOS) and arginine on intestinal damage in experimental mucositis. BALB/c mice were randomized into five groups: CTL (without mucositis + saline), MUC (mucositis + saline), MUC + FOS (mucositis + supplementation with FOS-1st until 10th day), MUC + ARG (mucositis + supplementation with arginine-1st until 10th day), and MUC + FOS + ARG (mucositis + supplementation with FOS and arginine-1st until 10th day). On the 7th day, mucositis was induced with an intraperitoneal injection of 300 mg/kg 5-fluorouracil (5-FU), and after 72 h, the animals were euthanized. The results showed that association of FOS and arginine reduced weight loss and oxidative stress (P < 0.05) and maintained intestinal permeability and histological score at physiological levels. The supplementation with FOS and arginine also increased the number of goblet cells, collagen area, and GPR41 and GPR43 gene expression (P < 0.05). Besides these, the association of FOS and arginine modulated intestinal microbiota, leading to an increase in the abundance of the genera Bacteroides, Anaerostipes, and Lactobacillus (P < 0.05) in relation to increased concentration of propionate and acetate. In conclusion, the present results show that the association of FOS and arginine could be important adjuvants in the prevention of intestinal mucositis probably due to modulated intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Mucosite , Camundongos , Animais , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Mucosite/patologia , Arginina/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Fluoruracila , Oligossacarídeos/farmacologia
19.
Braz J Microbiol ; 54(1): 559-563, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36525240

RESUMO

Caseous lymphadenitis is a well-known disease caused by Corynebacterium pseudotuberculosis affecting small ruminants with small significance to human health because of its minor zoonotic potential. In both cases, few treatment options are available and conventional antimicrobial therapy is commonly refractory due to development of pyogranulomatous reactions, bringing great interest in discovering novel therapeutics for more suitable approaches. Dideoxynucleotides presented antibacterial action against various bacteria but were never described for C. pseudotuberculosis. Hypothesizing the antimicrobial action of 2',3'-dideoxiadenosine (ddATP) against C. pseudotuberculosis, we performed for the first time an investigation of its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in the ATCC® 19,410 strain and a well-characterized clinical isolate of C. pseudotuberculosis. We also assessed potential synergism with penicillin. ddATP showed a growth delay effect for C. pseudotuberculosis at 2 µmol/mL and a MIC and MBC of 4 µmol/mL against the ATCC® 19,410 strain, but not for the clinical strain. An antimicrobial effect was observed when using concentrations lower than the MIC of ddATP associated with penicillin for both strains tested. Our data suggest the potential of nucleotide analogs, especially adenosine, and its combination with penicillin, as a possible novel treatment for C. pseudotuberculosis-induced infections, and contributes with knowledge regarding alternative drugs to treat C. pseudotuberculosis infections.


Assuntos
Infecções por Corynebacterium , Corynebacterium pseudotuberculosis , Linfadenite , Humanos , Penicilinas/farmacologia , Infecções por Corynebacterium/microbiologia , Linfadenite/microbiologia , Antibacterianos/farmacologia
20.
Probiotics Antimicrob Proteins ; 15(2): 338-350, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34524605

RESUMO

Intestinal mucositis (IM) is a common side effect resulting from cancer treatment. However, the management so far has not been very effective. In the last years, the role of the gut microbiota in the development and severity of mucositis has been studied. Therefore, the use of probiotics and paraprobiotics could have a potential therapeutic effect on IM. The aim of our study was to investigate the impact of the administration of Lacticaseibacillus rhamnosus (L. rhamnosus) CGMCC1.3724 and the paraprobiotic on IM in mice. For 13 days, male Balb/c mice were divided into six groups: control (CTL) and mucositis (MUC)/0.1 mL of saline; CTL LrV and MUC LrV/0.1 mL of 108 CFU of viable Lr; CTL LrI and MUC LrI/0.1 mL of 108 CFU of inactivated Lr. On the 10th day, mice from the MUC, MUC LrV, and MUC LrI groups received an intraperitoneal injection (300 mg/kg) of 5-fluorouracil to induce mucositis. The results showed that the administration of the chemotherapeutic agent increased the weight loss and intestinal permeability of the animals in the MUC and MUC LrV groups. However, administration of paraprobiotic reduced weight loss and maintained PI at physiological levels. The paraprobiotic also preserved the villi and intestinal crypts, reduced the inflammatory infiltrate, and increased the mucus secretion, Muc2 gene expression, and Treg cells frequency.


Assuntos
Lacticaseibacillus rhamnosus , Mucosite , Probióticos , Masculino , Animais , Camundongos , Mucosite/induzido quimicamente , Mucosite/prevenção & controle , Mucosite/tratamento farmacológico , Lacticaseibacillus , Modelos Animais de Doenças , Probióticos/farmacologia , Mucosa Intestinal , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...