Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(3): e3922, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36415050

RESUMO

Plants and their insect herbivores have been a dominant component of the terrestrial ecological landscape for the past 410 million years and feature intricate evolutionary patterns and co-dependencies. A complex systems perspective allows for both detailed resolution of these evolutionary relationships as well as comparison and synthesis across systems. Using proxy data of insect herbivore damage (denoted by the damage type or DT) preserved on fossil leaves, functional bipartite network representations provide insights into how plant-insect associations depend on geological time, paleogeographical space, and environmental variables such as temperature and precipitation. However, the metrics measured from such networks are prone to sampling bias. Such sensitivity is of special concern for plant-DT association networks in paleontological settings where sampling effort is often severely limited. Here, we explore the sensitivity of functional bipartite network metrics to sampling intensity and identify sampling thresholds above which metrics appear robust to sampling effort. Across a broad range of sampling efforts, we find network metrics to be less affected by sampling bias and/or sample size than richness metrics, which are routinely used in studies of fossil plant-DT interactions. These results provide reassurance that cross-comparisons of plant-DT networks offer insights into network structure and function and support their widespread use in paleoecology. Moreover, these findings suggest novel opportunities for using plant-DT networks in neontological terrestrial ecology to understand functional aspects of insect herbivory across geological time, environmental perturbations, and geographic space.


Assuntos
Benchmarking , Insetos , Animais , Viés de Seleção , Plantas , Folhas de Planta , Herbivoria
2.
PeerJ ; 7: e7798, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637117

RESUMO

Ecosystem function and stability are highly affected by internal and external stressors. Utilizing paleobotanical data gives insight into the evolutionary processes an ecosystem undergoes across long periods of time, allowing for a more complete understanding of how plant and insect herbivore communities are affected by ecosystem imbalance. To study how plant and insect herbivore communities change during times of disturbance, we quantified community turnover across the Paleocene--Eocene boundary in the Hanna Basin, southeastern Wyoming. This particular location is unlike other nearby Laramide basins because it has an abundance of late Paleocene and Eocene coal and carbonaceous shales and paucity of well-developed paleosols, suggesting perpetually high water availability. We sampled approximately 800 semi-intact dicot leaves from five stratigraphic levels, one of which occurs late in the Paleocene-Eocene thermal maximum (PETM). Field collections were supplemented with specimens at the Denver Museum of Nature & Science. Fossil leaves were classified into morphospecies and herbivore damage was documented for each leaf. We tested for changes in plant and insect herbivore damage diversity using rarefaction and community composition using non-metric multidimensional scaling ordinations. We also documented changes in depositional environment at each stratigraphic level to better contextualize the environment of the basin. Plant diversity was highest during the mid-late Paleocene and decreased into the Eocene, whereas damage diversity was highest at the sites with low plant diversity. Plant communities significantly changed during the late PETM and do not return to pre-PETM composition. Insect herbivore communities also changed during the PETM, but, unlike plant communities, rebound to their pre-PETM structure. These results suggest that insect herbivore communities responded more strongly to plant community composition than to the diversity of species present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA