Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(4): e58276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38752101

RESUMO

Introduction Head and neck squamous cell carcinoma (HNSCC) is a significant health concern in India, with around one million new cases annually. The prevalence of HNSCC is notably high in Asia, especially in India, due to habits like tobacco chewing, betel nut usage, and alcohol consumption. Treatment typically involves a combination of surgery, radiation, chemotherapy, and biological therapy, aiming for tumor control while preserving function and quality of life. However, survivors often face long-term side effects like difficulty swallowing, leading to complications such as aspiration pneumonia. Intensity-modulated radiotherapy (IMRT) has shown promise in improving outcomes by sparing critical swallowing structures. Efforts to minimize radiation-related dysphagia are crucial for enhancing patients' quality of life post-treatment. Our study focuses on examining dosimetric parameters associated with dysphagia aspiration, alongside evaluating dysphagia grades in both treatment groups using the RTOG scale. Material and methods Patients with histologically confirmed non-metastatic head and neck carcinomas were included in our study in November 2018-April 2020. A total of 56 patients were taken into our study with 28 in each arm. They underwent radical radiotherapy (RT) with a total dose of 66-70 Gy, with or without concurrent chemotherapy, meeting specific inclusion criteria and excluding those receiving reirradiation or with distant metastasis. Patients were divided into two groups: Group I received three-dimensional conformal radiotherapy (3D-CRT), and Group II received IMRT. Treatment planning involved immobilization, CT imaging, delineation of target volumes and organs at risk, and contouring of swallowing structures. Dose-volume histogram parameters (mean dose, maximum dose, V30, V70, V80, D50, and D80) were used to assess mean dose to swallowing structures outside the planning target volume (PTV), with a mean dose constraint of 50 Gy. Dysphagia was evaluated using the RTOG criteria at baseline, during treatment, and six months post-treatment. Statistical analysis was performed using SPSS, with significance set at p < 0.05. Results In our study, the mean age at presentation differed slightly between the IMRT and 3D-CRT arms: 58 years versus 55 years, respectively. A higher proportion of patients in both arms experienced symptoms for three to six months, with 53.6% in 3D-CRT and 42.9% in IMRT. Stage distribution varied, with IV being most common in 3D-CRT and stage II in IMRT. Approximately 56% of patients in both groups had a history of smoking. Significant differences were observed in spinal cord dose between 3DCRT and IMRT techniques (p < 0.001). Similarly, a significant difference was found in the mean dose received by dysphagia aspiration-related structures (DARSs) between the 3D-CRT and IMRT arms (p = 0.04). Patients in the IMRT arm exhibited superior dysphagia grades compared to those in the 3D-CRT arm, with statistical significance observed in the third month (p = 0.008) and sixth month (p = 0.048). Conclusion Our study found a notable decrease in the mean DARS dose and reduced dysphagia severity at three and six months in the IMRT group compared to the 3D-CRT group. However, due to the diverse study population, establishing a definitive correlation between the DARS dose and dysphagia severity was challenging. Future large-scale studies are needed to validate these findings for improved preservation of DARS structures.

2.
Cureus ; 14(7): e26692, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35949741

RESUMO

Introduction Radiotherapy has been an important component of the multimodality approach to breast cancer treatment. Newer techniques like three-dimensional radiotherapy had led to better dose distribution over the target volume, with tissue inhomogeneity corrections. To improve the uniformity in dose distribution, a newer technique of intensity modulation was developed, namely, intensity-modulated radiotherapy (IMRT). The present study was designed to compare inverse planned IMRT (IP IMRT) and field-in-field forward planned IMRT (FP IMRT) in patients with breast cancer receiving post-modified radical mastectomy (MRM) adjuvant radiotherapy in terms of dosimetric parameters and clinical outcomes. Materials and methods Fifty patients with breast cancer who have undergone MRM and need adjuvant radiotherapy were randomly assigned in a 1:1 ratio into two groups (25 each) of IP IMRT and FP IMRT techniques. The prescribed dose was 50 Gy in 25 fractions over five weeks. In IP IMRT, five to seven tangential beams were used for the chest wall, nodal volumes were placed at suitable angles with beam optimization, and calculation was carried out by the analytical anisotropic algorithm. For FP IMRT, two opposing tangential fields were created in such a way to achieve uniform dose distribution to the planning target volume (PTV), minimizing hot spot regions, and limiting dose to the ipsilateral lung and contralateral breast. Multiple subfields were manually designed to boost the area not included in the dose cloud. The dosimetric parameters were compared for PTV, lungs, heart, left anterior descending coronary artery (LAD), opposite breast, and esophagus. Results The dosimetric parameters in terms of PTV are better for IP IMRT plans compared to FP IMRT plans (V95%: 92.3% vs 75.2%, p = 0.0001; D90%: 47.4 Gy vs 42.9 Gy, p = 0.0001; D95%: 44.9 Gy vs 37.1, p = 0.0004). The ipsilateral lung (V10Gy: 71.9% vs 41%, p = 0.00001; V20Gy: 42.14% vs 36.35%, p = 0.03; V40Gy: 17.31% vs 26.95%, p = 0.00004; Dmean: 20.91 Gy vs 17.88 Gy, p = 0.01) and contralateral lung (V5Gy: 31.8% vs 0.1%, p < 0.00001; V10Gy: 6.2% vs 0.08%, p = 0.0001) received statistically significant lesser doses in terms of low dose parameters in FP IMRT. In the heart, the dosimetric parameter V5 was significantly lower for FP IMRT (61.7% vs 9.7%, p = 0.00001) along with Dmean (10.92 Gy vs 4.01 Gy, p = 0.001). Similarly, LAD parameters showed comparable high dose volumes (V40Gy: 21.02% vs 16.26%; p = 0.29) in both groups and a trend toward reduction in mean dose (17.1% vs 9.2%; p = 0.05) in FP IMRT group, although low dose volumes were higher in IP IMRT group. In contralateral breast, doses in smaller volumes were better for FP IMRT plans (V0.5Gy: 59.7% vs 43.8%, p = 0.01; V0.6Gy: 54.07% vs 37.6%, p = 0.007; V1Gy: 40.9% vs 22.1%, p = 0.001; V2Gy: 28.7% vs 9.4%, p = 0.00003; V5Gy: 12.07% vs 4.2%, p = 0.0001). In esophagus, statistically significant lower doses were seen only in terms of Dmean (10.29 Gy vs 5.1 Gy; p = 0.03) with FP IMRT. No significant difference in terms of skin reactions and dysphagia was seen in both the groups. Conclusion Both IP IMRT and FP IMRT techniques have advantages and disadvantages, and the superiority of one technique over another cannot be established in this study. The decision for choosing one technique over another can also be based on various patient-related factors weighing the risk of loco-regional recurrences to that of manifesting radiation-induced sequelae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...