Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 180: 108978, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39106674

RESUMO

BACKGROUND: Clinician-led quality control into oncological decision-making is crucial for optimising patient care. Explainable artificial intelligence (XAI) techniques provide data-driven approaches to unravel how clinical variables influence this decision-making. We applied global XAI techniques to examine the impact of key clinical decision-drivers when mapped by a machine learning (ML) model, on the likelihood of receiving different oesophageal cancer (OC) treatment modalities by the multidisciplinary team (MDT). METHODS: Retrospective analysis of 893 OC patients managed between 2010 and 2022 at our tertiary unit, used a random forests (RF) classifier to predict four possible treatment pathways as determined by the MDT: neoadjuvant chemotherapy followed by surgery (NACT + S), neoadjuvant chemoradiotherapy followed by surgery (NACRT + S), surgery-alone, and palliative management. Variable importance and partial dependence (PD) analyses then examined the influence of targeted high-ranking clinical variables within the ML model on treatment decisions as a surrogate model of the MDT decision-making dynamic. RESULTS: Amongst guideline-variables known to determine treatments, such as Tumour-Node-Metastasis (TNM) staging, age also proved highly important to the RF model (16.1 % of total importance) on variable importance analysis. PD subsequently revealed that predicted probabilities for all treatment modalities change significantly after 75 years (p < 0.001). Likelihood of surgery-alone and palliative therapies increased for patients aged 75-85yrs but lowered for NACT/NACRT. Performance status divided patients into two clusters which influenced all predicted outcomes in conjunction with age. CONCLUSION: XAI techniques delineate the relationship between clinical factors and OC treatment decisions. These techniques identify advanced age as heavily influencing decisions based on our model with a greater role in patients with specific tumour characteristics. This study methodology provides the means for exploring conscious/subconscious bias and interrogating inconsistencies in team-based decision-making within the era of AI-driven decision support.


Assuntos
Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Inteligência Artificial , Aprendizado de Máquina , Tomada de Decisão Clínica , Equipe de Assistência ao Paciente
2.
PeerJ Comput Sci ; 7: e497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34013030

RESUMO

Deep neural networks have been widely explored and utilised as a useful tool for feature extraction in computer vision and machine learning. It is often observed that the last fully connected (FC) layers of convolutional neural network possess higher discrimination power as compared to the convolutional and maxpooling layers whose goal is to preserve local and low-level information of the input image and down sample it to avoid overfitting. Inspired from the functionality of local binary pattern (LBP) operator, this paper proposes to induce discrimination into the mid layers of convolutional neural network by introducing a discriminatively boosted alternative to pooling (DBAP) layer that has shown to serve as a favourable replacement of early maxpooling layer in a convolutional neural network (CNN). A thorough research of the related works show that the proposed change in the neural architecture is novel and has not been proposed before to bring enhanced discrimination and feature visualisation power achieved from the mid layer features. The empirical results reveal that the introduction of DBAP layer in popular neural architectures such as AlexNet and LeNet produces competitive classification results in comparison to their baseline models as well as other ultra-deep models on several benchmark data sets. In addition, better visualisation of intermediate features can allow one to seek understanding and interpretation of black box behaviour of convolutional neural networks, used widely by the research community.

3.
Artif Intell Med ; 62(2): 105-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25262492

RESUMO

BACKGROUND: In general, medical geneticists aim to pre-diagnose underlying syndromes based on facial features before performing cytological or molecular analyses where a genotype-phenotype interrelation is possible. However, determining correct genotype-phenotype interrelationships among many syndromes is tedious and labor-intensive, especially for extremely rare syndromes. Thus, a computer-aided system for pre-diagnosis can facilitate effective and efficient decision support, particularly when few similar cases are available, or in remote rural districts where diagnostic knowledge of syndromes is not readily available. METHODS: The proposed methodology, visual diagnostic decision support system (visual diagnostic DSS), employs machine learning (ML) algorithms and digital image processing techniques in a hybrid approach for automated diagnosis in medical genetics. This approach uses facial features in reference images of disorders to identify visual genotype-phenotype interrelationships. Our statistical method describes facial image data as principal component features and diagnoses syndromes using these features. RESULTS: The proposed system was trained using a real dataset of previously published face images of subjects with syndromes, which provided accurate diagnostic information. The method was tested using a leave-one-out cross-validation scheme with 15 different syndromes, each of comprised 5-9 cases, i.e., 92 cases in total. An accuracy rate of 83% was achieved using this automated diagnosis technique, which was statistically significant (p<0.01). Furthermore, the sensitivity and specificity values were 0.857 and 0.870, respectively. CONCLUSION: Our results show that the accurate classification of syndromes is feasible using ML techniques. Thus, a large number of syndromes with characteristic facial anomaly patterns could be diagnosed with similar diagnostic DSSs to that described in the present study, i.e., visual diagnostic DSS, thereby demonstrating the benefits of using hybrid image processing and ML-based computer-aided diagnostics for identifying facial phenotypes.


Assuntos
Inteligência Artificial , Sistemas de Apoio a Decisões Clínicas , Genética Médica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA