Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308066, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057129

RESUMO

Porous carbons are important electrode materials for supercapacitors. One of the challenges associated with supercapacitors is improving their energy density without relying on pseudocapacitance, which is based on fast redox reactions that often shorten device lifetimes. A possible solution involves achieving high total capacitance (Ctot ), which comprises Helmholtz capacitance (CH ) and possibly quantum capacitance (CQ ), in high-surface carbon materials comprising minimally stacked graphene walls. In this work, a templating method is used to synthesize 3D mesoporous graphenes with largely identical pore structures (≈2100 m2 g-1 with an average pore size of ≈7 nm) but different concentrations of oxygen-containing functional groups (0.3-6.7 wt.%) and nitrogen dopants (0.1-4.5 wt.%). Thus, the impact of the heteroatom functionalities on Ctot is systematically investigated in an organic electrolyte excluding the effect of pore structures. It is found that heteroatom functionalities determine Ctot , resulting in the cyclic voltammetry curves being rectangular or butterfly-shaped. The nitrogen functionalities are found to significantly enhance Ctot owing to increased CQ .

2.
Chemistry ; 29(53): e202302594, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37607317

RESUMO

Invited for the cover of this issue are Takashi Kyotani, Tetsuji Itoh and co-workers at Tohoku University, Gunma University and AIST. The image depicts the synthesis of water-dispersible carbon nano-test tubes by using a template technique and the selective adsorption of DNA into the inner space of these test tubes. Read the full text of the article at 10.1002/chem.202301422.


Assuntos
Carbono , DNA , Humanos , Adsorção , Universidades , Água
3.
Chemistry ; 29(53): e202301422, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37392079

RESUMO

Water-dispersible carbon nano-test tubes (CNTTs) with an inner and outer diameter of about 25 and 35 nm, respectively, were prepared by the template technique and then their inner carbon surface was selectively oxidized to introduce carboxy groups. The adsorption behavior of DNA molecules on the oxidized CNTTs (Ox-CNTTs) was examined in the presence of Ca2+ cations. Many DNA molecules are attracted to the inner space of Ox-CNTTs based on the Ca2+ -mediated electrostatic interaction between DNA phosphate groups and carboxylate anions on the inner carbon surface. Moreover, the total net charge of the DNA adsorbed was found to be equal to the total charge of the carboxylate anions. This selective adsorption into the interior of Ox-CNTTs can be explained from the fact that the electrostatic interaction onto the inner concave surface is much stronger than that on the outer convex surface. On the other hand, the desorption of DNA easily occurs whenever Ca2+ cations are removed by washing with deionized water. Thus, each of Ox-CNTTs works well as a nano-container for a large amount of DNA molecules, thereby resulting in the occurrence of DNA enrichment in the nanospace.


Assuntos
Carbono , Água , Ânions , DNA , Cátions , Adsorção
4.
Adv Sci (Weinh) ; 10(16): e2300268, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37029464

RESUMO

The rational design of a stable and catalytic carbon cathode is crucial for the development of rechargeable lithium-oxygen (LiO2 ) batteries. An edge-site-free and topological-defect-rich graphene-based material is proposed as a pure carbon cathode that drastically improves LiO2 battery performance, even in the absence of extra catalysts and mediators. The proposed graphene-based material is synthesized using the advanced template technique coupled with high-temperature annealing at 1800 °C. The material possesses an edge-site-free framework and mesoporosity, which is crucial to achieve excellent electrochemical stability and an ultra-large capacity (>6700 mAh g-1 ). Moreover, both experimental and theoretical structural characterization demonstrates the presence of a significant number of topological defects, which are non-hexagonal carbon rings in the graphene framework. In situ isotopic electrochemical mass spectrometry and theoretical calculations reveal the unique catalysis of topological defects in the formation of amorphous Li2 O2 , which may be decomposed at low potential (∼ 3.6 V versus Li/Li+ ) and leads to improved cycle performance. Furthermore, a flexible electrode sheet that excludes organic binders exhibits an extremely long lifetime of up to 307 cycles (>1535 h), in the absence of solid or soluble catalysts. These findings may be used to design robust carbon cathodes for LiO2 batteries.

5.
J Chem Phys ; 156(17): 174702, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525650

RESUMO

Magnesium has attracted growing interest for its use in various applications, primarily due to its abundance, lightweight properties, and relatively low cost. However, one major drawback to its widespread use remains to be its reactivity in aqueous environments, which is poorly understood at the atomistic level. Ab initio density functional theory methods are particularly well suited to bridge this knowledge gap, but the explicit simulation of electrified water/metal interfaces is often too costly from a computational viewpoint. Here, we investigate water/Mg interfaces using the computationally efficient implicit solvent model VASPsol. We show that the Mg (0001), (101̄0), and (101̄1) surfaces each form different electrochemical double layers due to the anisotropic smoothing of the electron density at their surfaces, following Smoluchowski rules. We highlight the dependence that the position of the diffuse cavity surrounding the interface has on the potential of zero charge and the electron double layer capacitance, and how these parameters are also affected by the addition of explicit water and adsorbed OH molecules. Finally, we calculate the equilibrium potential of Mg2+/Mg0 in an aqueous environment to be -2.46 V vs a standard hydrogen electrode, in excellent agreement with the experiment.

6.
Chem Sci ; 13(11): 3140-3146, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35414888

RESUMO

γ-Al2O3 nanoparticles promote pyrolytic carbon deposition of CH4 at temperatures higher than 800 °C to give single-walled nanoporous graphene (NPG) materials without the need for transition metals as reaction centers. To accelerate the development of efficient reactions for NPG synthesis, we have investigated early-stage CH4 activation for NPG formation on γ-Al2O3 nanoparticles via reaction kinetics and surface analysis. The formation of NPG was promoted at oxygen vacancies on (100) surfaces of γ-Al2O3 nanoparticles following surface activation by CH4. The kinetic analysis was well corroborated by a computational study using density functional theory. Surface defects generated as a result of surface activation by CH4 make it kinetically feasible to obtain single-layered NPG, demonstrating the importance of precise control of oxygen vacancies for carbon growth.

7.
Phys Chem Chem Phys ; 24(5): 2832-2842, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050275

RESUMO

Luminescent molecular crystals have gained significant research interest for optoelectronic applications. However, fully understanding their structural and electronic relationships in the condensed phase and under external stimuli remains a significant challenge. Here, piezochromism in the molecular crystal 9,10-bis((E)-2-(pyridin-4-yl)vinyl)anthracene (BP4VA) is studied using a combination of density functional theory (DFT) and time-dependent TD-DFT. We investigate the effects that molecular packing and geometry have on the electronic and phonon structure and the excited state properties in this archetypal system. We find that the luminescence properties are red-shifted with the transition from a herringbone to a sheet packing arrangement. An almost continuous red-shift in the band gap is found with the application of an external pressure through the enhancement of π-π and CH-π interactions, and is a mechanism in fine tuning an emissive response. The analysis of the phonon structure of the molecular crystal suggests restriction of motion in the herringbone packing arrangement, with motion restricted at higher pressure. This is supported by the Huang-Rhys factors which show a decrease in the reorganisation energy with the application of pressure. Ultimately, a balance between the decrease in reorganisation energies and the increase in exciton coupling will determine whether nonradiative decay is enhanced or decreased with the increase in pressure in these systems.

8.
Phys Chem Chem Phys ; 23(44): 25388-25400, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34751284

RESUMO

Largely inspired by nature, hierarchical porous materials are attractive for a wide range of applications as they provide a unique combination of transport and interfacial properties. Hierarchical macro-nanoporous metals (HMNPM) are of particular interest due to their high thermal and electrical conductivities, high volumetric macroporosity as well as their strong capillary forces, and large surface area due to their nanopores. However, tuning the porosity of HMNPMs remains challenging and often requires complex multi-step synthesis methods. Here we demonstrate that controlling the dealloying kinetics of close-to-eutectic alloys allows the selective tuning of the porosity of a hierarchical metal from tens of nanometers to hundreds of micrometers. This was demonstrated by dealloying the Cu-Mg-Zn alloy of close-to-eutectic composition to develop trimodal hierarchical macro-nanoporous copper with an impressive porosity of 94 vol% in the form of macroscopic self-supporting bulk samples. A combination of dealloying experiments and density functional theory calculations indicate that while selective corrosion of chemical phases in the Cu-Mg-Zn alloy is triggered according to their Volta potential, the kinetics can be altered by confinement and non-homogeneity effects. The obtained insights into the kinetics of close-to-eutectic alloy dealloying can be used to develop other hierarchical porous metals with tunable porosity and controlled shape.

9.
ACS Appl Mater Interfaces ; 13(34): 41303-41314, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34405998

RESUMO

We present a detailed theoretical investigation of the interaction of graphene with the SrO-terminated (001) surface of pristine and La-doped SrTiO3. The adsorption of graphene is thermodynamically favorable with interfacial adsorption energies of -0.08 and -0.32 J/m2 to pristine SrTiO3 and La-doped SrTiO3 surfaces, respectively. We find that graphene introduces C 2p states at the Fermi level, rendering the composite semimetallic, and thus the electrical properties are predicted to be highly sensitive to the amount and quality of the graphene. An investigation of the lattice dynamics predicts that graphene adsorption may lead to a 60-90% reduction in the thermal conductivity due to a reduction in the phonon group velocities, accounting for the reduced thermal conductivity of the composite materials observed experimentally. This effect is enhanced by La doping. We also find evidence that both La dopant ions and adsorbed graphene introduce low-frequency modes that may scatter heat-carrying acoustic phonons, and that, if present, these effects likely arise from stronger phonon-phonon interactions.

10.
Front Chem ; 9: 798838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993176

RESUMO

Accelerating materials discovery is the cornerstone of modern technological competitiveness. Yet, the inorganic synthesis of new compounds is often an important bottleneck in this quest. Well-established quantum chemistry and experimental synthesis methods combined with consolidated network science approaches might provide revolutionary knowledge to tackle this challenge. Recent pioneering studies in this direction have shown that the topological analysis of material networks hold great potential to effectively explore the synthesizability of inorganic compounds. In this Perspective we discuss the most exciting work in this area, in particular emerging new physicochemical insights and general concepts on how network science can significantly help reduce the timescales required to discover new materials and find synthetic routes for their fabrication. We also provide a perspective on outstanding problems, challenges and open questions.

11.
J Am Chem Soc ; 141(44): 17838-17846, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31591883

RESUMO

The sensitivity of NMR to the local environment, without the need for any long-range order, makes it an ideal tool for the characterization of disordered materials. Computational prediction of NMR parameters can be of considerable help in the interpretation and assignment of NMR spectra of solids, but the statistical representation of all possible chemical environments for a solid solution is challenging. Here, we illustrate the use of a symmetry-adapted configurational ensemble in the simulation of NMR spectra, in combination with solid-state NMR experiments. We show that for interpretation of the complex and overlapped lineshapes that are typically observed, it is important to go beyond a single-configuration representation or a simple enumeration of local environments. The ensemble method leads to excellent agreement between simulated and experimental spectra for Y2(Sn,Ti)2O7 pyrochlore ceramics, where the overlap of signals from different local environments prevents a simple decomposition of the experimental spectral lineshapes. The inclusion of a Boltzmann weighting confirms that the best agreement with experiment is obtained at higher temperatures, in the limit of full disorder. We also show that to improve agreement with experiment, in particular at low dopant concentrations, larger supercells are needed, which might require alternative simulation approaches as the complexity of the system increases. It is clear that ensemble-based modeling approaches in conjunction with NMR spectroscopy offer great potential for understanding configurational disorder, ultimately aiding the future design of functional materials.

12.
Phys Chem Chem Phys ; 21(35): 19311-19317, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31451820

RESUMO

Semiconducting quaternary chalcogenides with A2ZnBQ4 stoichiometry, where A and B are monovalent and tetravalent metal ions and Q is a chalcogen (e.g. Cu2ZnSnS4 or CZTS) have recently attracted attention as potential solar-cell absorbers made from abundant and non-toxic elements. Unfortunately, they exhibit relatively poor sunlight conversion efficiencies, which has been linked to site disorder within the tetrahedral cation sub-lattice. In order to gain a better understanding of the factors controlling cation disorder in these chalcogenides, we have used powder neutron diffraction, coupled with Density Functional Theory (DFT) simulations, to investigate the detailed structure of A2ZnBQ4 phases, with A = Cu, Ag; B = Sn, Ge; and Q = S, Se. Both DFT calculations and powder neutron diffraction data demonstrate that the kesterite structure (space group: I4[combining macron]) is adopted in preference to the higher-energy stannite structure (space group: I4[combining macron]2m). The contrast between the constituent cations afforded by neutron diffraction reveals that copper and zinc cations are only partially ordered in the kesterites Cu2ZnBQ4 (B = Sn, Ge), whereas the silver-containing phases are fully ordered. The degree of cation order in the copper-containing phases shows a greater sensitivity to the identity of the B-cation than to the chalcogenide anion. DFT indicates that cation ordering minimises inter-planar Zn2+Zn2+ electrostatic interactions, while there is an additional intra-planar energy contribution associated with size mismatch. The complete Ag/Zn order in Ag2ZnBQ4 (B = Sn, Ge) phases can thus be related to the anisotropic expansion of the unit cell on replacing Cu with Ag.

13.
Chem Mater ; 31(11): 4063-4071, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32063673

RESUMO

Lattice compression through hydrostatic pressure has emerged as an effective means of tuning the structural and optoelectronic properties of hybrid halide perovskites. In addition to external pressure, the local strain present in solution-processed thin films also causes significant heterogeneity in their photophysical properties. However, an atomistic understanding of structural changes of hybrid perovskites under pressure and their effects on the electronic landscape is required. Here, we use high level ab initio simulation techniques to explore the effect of lattice compression on the formamidinium (FA) lead iodide compound, FA1-x Cs x PbI3 (x = 0, 0.25). We show that, in response to applied pressure, the Pb-I bonds shorten, the PbI6 octahedra tilt anisotropically, and the rotational dynamics of the FA+ molecular cation are partially suppressed. Because of these structural distortions, the compressed perovskites exhibit band gaps that are narrower (red-shifted) and indirect with spin-split band edges. Furthermore, the shallow defect levels of intrinsic iodide defects transform to deep-level states with lattice compression. This work highlights the use of hydrostatic pressure as a powerful tool for systematically modifying the photovoltaic performance of halide perovskites.

14.
Angew Chem Int Ed Engl ; 55(52): 16012-16016, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-27862763

RESUMO

Tuning the electronic structure of metal-organic frameworks is the key to extending their functionality to the photocatalytic conversion of absorbed gases. Herein we discuss how the band edge positions in zeolitic imidazolate frameworks (ZIFs) can be tuned by mixing different imidazole-based linkers within the same structure. We present the band alignment for a number of known and hypothetical Zn-based ZIFs with respect to the vacuum level. Structures with a single type of linker exhibit relatively wide band gaps; however, by mixing linkers of a low-lying conduction edge with linkers of a high-lying valence edge, we can predict materials with ideal band positions for visible-light water splitting and CO2 reduction photocatalysis. By introducing copper in the tetrahedral position of the mixed-linker ZIFs, it would be possible to increase both photo-absorption and the electron-hole recombination times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...