Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 39(8): 3025-3033, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32274964

RESUMO

The widespread antigenic changes lead to the emergence of a new type of coronavirus (CoV) called as severe acute respiratory syndrome (SARS)-CoV-2 that is immunologically different from the previous circulating species. Angiotensin-converting enzyme-2 (ACE-2) is one of the most important receptors on the cell membrane of the host cells (HCs) which its interaction with spike protein (SP) with a furin-cleavage site results in the SARS-CoV-2 invasion. Hence, in this review, we presented an overview on the interaction of ACE-2 and furin with SP. As several kinds of CoVs, from various genera, have at their S1/S2 binding site a preserved site, we further surveyed the role of furin cleavage site (FCS) on the life cycle of the CoV. Furthermore, we discussed that the small molecular inhibitors can limit the interaction of ACE-2 and furin with SP and can be used as potential therapeutic platforms to combat the spreading CoV epidemic. Finally, some ongoing challenges and future prospects for the development of potential drugs to promote targeting specific activities of the CoV were reviewed. In conclusion, this review may pave the way for providing useful information about different compounds involved in improving the effectiveness of CoV vaccine or drugs with minimum toxicity against human health.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Furina , Enzima de Conversão de Angiotensina 2 , Angiotensinas , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
2.
Sci Rep ; 10(1): 5925, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245980

RESUMO

The efficacy of different modalities of treating breast cancer is inhibited by several limitations such as off-targeted drug distribution, rapid drug clearance, and drug resistance. To overcome these limitations, we developed Lf-Doxo-PMNSs for combined chemo-MF-PTT. The PMNSs were synthesized by hydrothermal method and their physicochemical properties were examined by FE-SEM, TEM, DLS, TGA, XRD investigations. The cytotoxicity of as-synthesized NPs against 4T1 cells was carried out by MTT and flow cytometry assays. Afterwards, the anti-cancer activities of as-synthesized Lf-Doxo-PMNSs on the tumor status, drug distribution and apoptosis mechanism were evaluated. The anti-cancer assays showed that Lf-Doxo-PMNSs significantly suppressed the cancer cell proliferation and tumor weight by prolonging drug availability and potential drug loading in tumor cells; whereas they showed a minimum cytotoxicity against non-cancerous cells. Likewise, combined chemo-MF-PTT using Lf-Doxo-PMNSs displayed the highest anti-cancer activity followed by combined chemo-PTT and combined chemo-MF therapy based on altering the apoptosis mechanism. Therefore, these results showed that combined chemo-MF-PTT based on Lf-Doxo-PMNSs can be used as a promising therapeutic platform with potential targeted drug delivery and high loading capacity features as well as reducing cancer drug resistance.


Assuntos
Neoplasias da Mama/terapia , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Hipertermia Induzida/métodos , Magnetoterapia/métodos , Fotoquimioterapia/métodos , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/transplante , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanopartículas de Magnetita/química , Camundongos , Nanosferas/química , Distribuição Tecidual
3.
Talanta ; 212: 120782, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113545

RESUMO

Development of optical nanobiosensors has emerged as one of the most important bioresearch areas of interest over the past decades especially in the modern innovations in the design and utilization of sensing platforms. The application of nanobiosensors has been accelerated with the introduction of plasmonic NPs, which overcome the most of the limitations in the case of conventional optical nanobiosensors. Since the plasmonic AuNPs-based nanobiosensors provide high potential achievements to develop promising platforms in fully integrated multiplex assays, some well-developed investigations are clearly required to improve the current technologies and integration of multiple signal inputs. Therefore, in this literature, we summarized the performance and achievements of optical nanobiosensors according to plasmonic rules of AuNPs, including SPR, LSPR, SERS and chiroptical phenomena. Also, we investigated the effects of the physicochemical properties of AuNPs such as size, shape, composition, and assembly on the plasmonic signal propagation in AuNPs-based nanobiosensors. Moreover, we presented an overview on the current state of plasmonic AuNPs-based nanobiosensors in the biomedical activities. Besides, this paper looks at the current and future challenges and opportunities of ongoing efforts to achieve the potential applications of AuNPs-based optical plasmonic nanobiosensors in integration with other nanomaterials. Taken together, the main focus of this paper is to provide some applicable information to develop current methodologies in fabrication of potential AuNPs-based nanobiosensors for detection of a wide range of analytes.

4.
Mater Sci Eng C Mater Biol Appl ; 108: 110422, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924012

RESUMO

The utilization of AuNPs in therapeutic applications has been accelerated by discovering their catalytic activity consistent with the activity of natural enzymes. However, to reduce unwanted activities, it is imperative to fully understand their catalytic mechanisms to increase efficiency and safety. Therefore, along with other reports, we aimed to classify the enzymatic activity of Au nanozymes based on recent advance in their applications in biosensing and therapeutic activities. The results of the reported experiments indicate that the Au nanozymes can be used in biosensing of a wide range of agents such as molecule (H2O2 and glucose), ions, nucleic acids, proteins, cells, and pathogens. Furthermore, they can be used as potential candidates in inhibition of neurodegenerative diseases, cancer therapy, and antibacterial activities. Biosensing and therapeutic activities are generally based on colorimetric assays and the controlling the ROS level in the targeted cells, respectively. Finally, a brief explanation of the current challenges of the Au nanozymes in biomedical approaches was discussed. Indeed, this review holds a great promise in understanding the Au nanozymes properties and their development in biotechnology, medicine, and related industries.


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Colorimetria , Nanopartículas Metálicas/química , Nanoestruturas/química , Espécies Reativas de Oxigênio/metabolismo
5.
Biochim Biophys Acta Gen Subj ; 1864(1): 129435, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31526869

RESUMO

BACKGROUND: Gold nanoparticles (AuNPs) with unique physicochemical properties have received a great deal of interest in the field of biological, chemical and biomedical implementations. Despite the widespread use of AuNPs in chemical and biological sensing, catalysis, imaging and diagnosis, and more recently in therapy, no comprehensive summary has been provided to explain how AuNPs could aid in developing improved sensing and catalysts systems as well as medical settings. SCOPE OF REVIEW: The chemistry of Au-based nanosystems was followed by reviewing different applications of Au nanomaterials in biological and chemical sensing, catalysis, imaging and diagnosis by a number of approaches, and finally synergistic combination therapy of different cancers. Afterwards, the clinical impacts of AuNPs, future application of AuNPs, and opportunities and challenges of AuNPs application were also discussed. MAJOR CONCLUSIONS: AuNPs show exclusive colloidal stability and are considered as ideal candidates for colorimetric detection, catalysis, imaging, and photothermal transducers, because their physicochemical properties can be tuned by adjusting their structural dimensions achieved by the different manufacturing methods. GENERAL SIGNIFICANCE: This review provides some details about using AuNPs in sensing and catalysis applications as well as promising theranostic nanoplatforms for cancer imaging and diagnosis, and sensitive, non-invasive, and synergistic methods for cancer treatment in an almost comprehensive manner.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas/uso terapêutico , Imagem Molecular/métodos , Nanoestruturas/uso terapêutico , Catálise , Colorimetria , Ouro/química , Ouro/uso terapêutico , Humanos , Nanopartículas Metálicas/química , Nanoestruturas/química
6.
J Biomol Struct Dyn ; 38(9): 2746-2762, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31299885

RESUMO

Enzymes are one of the foundations and regulators for all major biological activities in living bodies. Hence, enormous efforts have been made for enhancing the efficiency of enzymes under different conditions. The use of nanomaterials as novel carriers for enzyme delivery and regulating the activities of enzymes has stimulated significant interests in the field of nano-biotechnology for biomedical applications. Since, all types of nanoparticles (NPs) offer large surface to volume ratios, the use of NPs as enzyme carriers affect the structure, performance, loading efficiency, and the reaction kinetics of enzymes. Hence, the immobilization of enzymes on nanomatrices can be used as a useful approach for direct delivery of therapeutic enzymes to the targeted sites. In other words, NPs can be used as advanced enzyme delivery nanocarriers. In this paper, we present an overview of different binding of enzymes to the nanomaterials as well as different types of nanomatrix supports for immobilization of enzymes. Afterwards, the enzyme immobilization on nanomaterials as a potential system for enzyme delivery has been discussed. Finally, the challenges associated with the enzyme delivery using nano matrices and their future perspective have been discussed.Communicated by Ramasamy H. Sarma.


Assuntos
Nanopartículas , Nanoestruturas , Enzimas Imobilizadas
7.
J Biomol Struct Dyn ; 38(12): 3676-3686, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31476976

RESUMO

Nickel oxide nanoparticles (NiO NPs) have received great interests in medical and biotechnological applications. However, their adverse impacts against biological systems have not been well-explored. Herein, the influence of NiO NPs on structural changes, heme degradation and aggregation of hemoglobin (Hb) was evaluated by UV-visible (Vis) spectroscopy, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), and molecular modeling investigations. Also, the morphological changes and expression of Bax/Bcl-2 mRNA in human lymphocyte cell exposed to NiO NPs were assayed by DAPI staining and quantitative real-time PCR (qPCR), respectively. The UV-Vis study depicted that NiO NPs resulted in the displacement of aromatic residues and heme groups and production of the pro-aggregatory species. Intrinsic and Thioflavin T (ThT) fluorescence studies revealed that NiO NPs resulted in heme degradation and amorphous aggregation of Hb, respectively, which the latter result was also confirmed by TEM study. Moreover, far UV-CD study depicted that NiO NPs lead to substantial secondary structural changes of Hb. Furthermore, near UV-CD displayed that NiO NPs cause quaternary conformational changes of Hb as well as heme displacement. Molecular modelling study also approved that NiO NPs resulted in structural alterations of Hb and heme deformation. Moreover, morphological and genotoxicity assays revealed that the DNA fragmentation and expression ratio of Bax/Bcl-2 mRNA increased in lymphocyte cells treated with NiO NPs for 24 hr. In conclusion, this study indicates that NiO NPs may affect the biological media and their applications should be limited.Communicated by Ramaswamy H. Sarma.


Assuntos
Apoptose , Linfócitos , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Heme , Hemoglobinas , Humanos
8.
Int J Biol Macromol ; 143: 665-676, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31830450

RESUMO

Nanoparticles (NPs) have been widely used for immobilization of wide ranges of enzymes. However, the stabilization of enzymes on NPs is a major challenge, crucial for regulating enzymatic activity and their medical applications. To overcome these challenges, it is necessary to explore how enzymes attach to nanomaterials and their properties are affected by such interactions. In this review we present an overview on the different strategies of the enzyme immobilization into the NPs and their corresponding stability against temperature and pH. The effects of surface charge, particle size, morphology, and aggregation of NPs on the stability of immobilized enzymes were summarized. The activity of immobilized enzyme into the NPs was reviewed to disclose more detail regarding the interaction of biomolecules with NPs. The combination of enzyme immobilization with prodrugs was also reviewed as a promising approach for biomedical application of enzyme in cancer therapy. Finally, the current challenges and future applications of NPs in enzyme immobilization and the utilization of immobilized enzyme toward prodrug activation in cytoplasm of cancer cells were presented. In conclusion, this review may pave the way for providing a perspective on development to the industrial and clinical translation of immobilized enzymes.


Assuntos
Enzimas Imobilizadas/metabolismo , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Estabilidade Enzimática , Humanos , Nanoestruturas/ultraestrutura
9.
Int J Nanomedicine ; 14: 6989-7000, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695369

RESUMO

AIM: Among therapeutic proposals for amyloid-associated disorders, special attention has been given to the exploitation of nanoparticles (NPs) as promising agents against aggregation. METHODS: In this paper, the inhibitory effect of cerium oxide (CeO2) NPs against α-synuclein (α-syn) amyloid formation was explored by different methods such as Thioflavin T (ThT) and 8-anilinonaphthalene-1-sulfonic acid (ANS) fluorescence spectroscopy, Congo red adsorption assay, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), and bioinformatical approaches. Also, the cytotoxicity of α-syn amyloid either alone or with CeO2 NPs against neuron-like cells (SH-SY5Y) was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and quantitative real-time polymerase chain reaction (Bax and Bcl-2 gene expression) assays. RESULTS: ThT and ANS fluorescence assays indicated that CeO2 NPs inhibit the formation of aggregated species and hydrophobic patches of α-syn in amyloidogenic conditions, respectively. Congo red and CD assays demonstrated that CeO2 NPs reduce the formation of amyloid species and ß-sheets structures of α-syn molecules, respectively. TEM investigation also confirmed that CeO2 NPs limited the formation of well-defined fibrillary structures of α-syn molecules. Molecular docking and dynamic studies revealed that CeO2 NPs could bind with different affinities to α-syn monomer and amyloid species and fibrillar structure of α-syn is disaggregated in the presence of CeO2 NPs. Moreover, cellular assays depicted that CeO2 NPs mitigate the cell mortality, apoptosis, and the ratio of Bax/Bcl-2 gene expression associated with α-syn amyloids. CONCLUSION: It may be concluded that CeO2 NPs can be used as therapeutic agents to reduce the aggregation of proteins and mitigate the occurrence of neurodegenerative diseases.


Assuntos
Amiloide/metabolismo , Cério/química , Nanopartículas/química , alfa-Sinucleína/toxicidade , Amiloide/ultraestrutura , Apoptose , Benzotiazóis/metabolismo , Linhagem Celular Tumoral , Vermelho Congo , Humanos , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Necrose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Fluorescência , alfa-Sinucleína/ultraestrutura , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
10.
Int J Nanomedicine ; 14: 8433-8444, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749617

RESUMO

AIMS: Different kinds of vitamins can be used as promising candidates to mitigate the structural changes of proteins and associated cytotoxicity stimulated by NPs. Therefore, the structural changes of α-syn molecules and their associated cytotoxicity in the presence of SWCNTs either alone or co-incubated with vitamin K1 were studied by spectroscopic, bioinformatical, and cellular assays. METHODS: Intrinsic and ThT fluorescence, CD, and Congo red absorption spectroscopic approaches as well as TEM investigation, molecular docking, and molecular dynamics were used to explore the protective effect of vitamin K1 on the structural changes of α-syn induced by SWCNTs. The cytotoxicity of α-syn/SWCNTs co-incubated with vitamin K1 against SH-SY5Y cells was also carried out by MTT, LDH, and caspase-3 assays. RESULTS: Fluorescence spectroscopy showed that vitamin K1 has a significant effect in reducing SWCNT-induced fluorescence quenching and aggregation of α- syn. CD, Congo red adsorption, and TEM investigations determined that co-incubation of α- syn with vitamin K1 inhibited the propensity of α-syn into the structural changes and amorphous aggregation in the presence of SWCNT. Docking studies determined the occupation of preferred docked site of SWCNT by vitamin K1 on α- syn conformation. A molecular dynamics study also showed that vitamin K1 reduced the structural changes of α- syn induced by SWCNT. Cellular data exhibited that the cytotoxicity of α- syn co-incubated with vitamin K1 in the presence of SWCNTs is less than the outcomes obtained in the absence of the vitamin K1. CONCLUSION: It may be concluded that vitamin K1 decreases the propensity of α- syn aggregation in the presence of SWCNTs and induction of cytotoxicity.


Assuntos
Nanotubos de Carbono/química , Vitamina K 1/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Adsorção , Benzotiazóis/metabolismo , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Vermelho Congo , Humanos , L-Lactato Desidrogenase/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nanotubos de Carbono/ultraestrutura , Espectrometria de Fluorescência
11.
Int J Pharm ; 572: 118824, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31715345

RESUMO

In this study, we formulated silymarin-HSA nanoplex and assayed its ability to reduce LPS-induced toxicity in vitro and in vivo. Silymarin molecules were encapsulated into HSA nanoplex and the loading efficiency and characterization of fabricated nanoplex were performed by using HPLC, TEM, SEM, DLS, FTIR analysis, and theoretical studies. Afterwards, their protective effect against LPS (20 µg/ml) -induced toxicity in SH-SY5Y cells was investigated by MTT, ROS, and apoptosis assays. For in vivo experiments, rats were pre-treated with either silymarin or silymarin -HSA nanoplex (200 mg/kg) orally for 3 days and at third day received LPS by IP at a dose of 0.5 mg/kg, 150 min before scarification followed by SOD and CAT activity assay. The formulation of silymarin-HSA nanoplex showed a spherical shape with an average diameter between 50 nm and 150 nm, hydrodynamic radius of 188.3 nm, zeta potential of -26.6 mV, and a drug loading of 97.3%. In LPS-treated cells, pretreatments with silymarin-HSA noncomplex recovered the cell viability and decreased the ROS level and corresponding apoptosis more significantly than free silymarin. In rats, it was also depicted that, silymarin-HSA noncomplex can increase the SOD and CAT activity in brain tissue at LPS-triggered oxidative stress model more significantly than the free counterpart. Therefore, nanoformulation of silymarin improved its capability to reduce LPS-induced oxidative stress by restoring cell viability and elevation of SOD and CAT activity in vitro and in vivo, respectively. In conclusion, formulation of silymarin may hold a great promise in the development of antioxidant agents.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Albumina Sérica Humana/química , Silimarina/farmacologia , Animais , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Neuroblastoma/patologia , Tamanho da Partícula , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Silimarina/administração & dosagem
12.
Int J Nanomedicine ; 14: 4637-4648, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417259

RESUMO

AIM: It has been indicated that NPs may change the amyloidogenic steps of proteins and relevant cytotoxicity. Therefore, this report assigned to explore the impact of ZVFe NPs on the amyloidogenicity and cytotoxicity of α-synuclein as one of the many known amyloid proteins. METHODS: The characterization of α-synuclein at amyloidogenic condition either alone or with ZVFe NPs was carried out by fluorescence, CD, UV-visible spectroscopic methods, TEM study, docking, and molecular modeling. The cytotoxicity assay of α-synuclein amyloid in the absence and presence of ZVFe NPs was also done by MTT, LDH, and flow cytometry analysis. RESULTS: ThT fluorescence spectroscopy revealed that ZVFe NPs shorten the lag phase and accelerate the fibrillation rate of α-synuclein. Nile red and intrinsic fluorescence spectroscopy, CD, Congo red adsorption, and TEM studies indicated that ZVFe NP increased the propensity of α-synuclein into the amyloid fibrillation. Molecular docking study revealed that hydrophilic residues, such as Ser-9 and Lys-12 provide proper sites for hydrogen bonding and electrostatic interactions with adsorbed water molecules on ZVFe NPs, respectively. Molecular dynamics study determined that the interacted protein shifted from a natively discorded conformation toward a more packed structure. Cellular assay displayed that the cytotoxicity of α-synuclein amyloid against SH-SY5Y cells in the presence of ZVFe NPs is greater than the results obtained without ZVFe NPs. CONCLUSION: In conclusion, the existence of ZVFe NPs promotes α-synuclein fibrillation at amyloidogenic conditions by forming a potential template for nucleation, the growth of α-synuclein fibrillation and induced cytotoxicity.


Assuntos
Amiloide/metabolismo , Ferro/química , Nanopartículas Metálicas/química , alfa-Sinucleína/metabolismo , Amiloide/química , Benzotiazóis/química , Morte Celular , Linhagem Celular Tumoral , Vermelho Congo/química , Humanos , Cinética , L-Lactato Desidrogenase/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxazinas/química , Agregados Proteicos , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Tirosina/química , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura
13.
Int J Nanomedicine ; 14: 5355-5368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409992

RESUMO

AIM: Nanoparticles (NPs) have been receiving potential interests in protein delivery and cell therapy. As a matter of fact, NPs may be used as great candidates in promoting cell therapy by catalase (CAT) delivery into high oxidative stress tissues. However, for using NPs like SiO2 as carriers, the interaction of NPs with proteins and mesenchymal stem cells (MSCs) should be explored in advance. METHODS: In the present study, the interaction of SiO2 NPs with CAT and human MSCs (hMSCs) was explored by various spectroscopic methods (fluorescence, circular dichroism (CD), UV-visible), molecular docking and dynamics studies, and cellular (MTT, cellular morphology, cellular uptake, lactate dehydrogenase, ROS, caspase-3, flow cytometry) assays. RESULTS: Fluorescence study displayed that both dynamic and static quenching mechanisms and hydrophobic interactions are involved in the spontaneous interaction of SiO2 NPs with CAT. CD spectra indicated that native structure of CAT remains stable after interaction with SiO2 NPs. UV-visible study also revealed that the kinetic parameters of CAT such as Km, Vmax, Kcat, and enzyme efficiency were not changed after the addition of SiO2 NPs. Molecular docking and dynamics studies showed that Si and SiO2 clusters interact with hydrophobic residues of CAT and SiO2 cluster causes minor changes in the CAT structure at a total simulation time of 200 ps. Cellular assays depicted that SiO2 NPs induce significant cell mortality, change in cellular morphology, cellular internalization, ROS elevation, and apoptosis in hMSCs at higher concentration than 100 µg/mL (170 µM). CONCLUSION: The current results suggest that low concentrations of SiO2 NPs induce no substantial change or mortality against CAT and hMSCs, and potentially useful carriers in CAT delivery to hMSC.


Assuntos
Fenômenos Biofísicos , Células-Tronco Mesenquimais/citologia , Modelos Teóricos , Nanopartículas/química , Dióxido de Silício/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Forma Celular/efeitos dos fármacos , Dicroísmo Circular , Endocitose/efeitos dos fármacos , Humanos , Cinética , L-Lactato Desidrogenase/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Termodinâmica
14.
Int J Biol Macromol ; 138: 800-809, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351960

RESUMO

Herein, we explored the interaction of Al2O3 NPs with RBCs and Hb to determine the effect of Al2O3 NPs on hemolytic activity and Hb denaturation. The percentage of hemolysis of extracts and direct contact assays triggered by Al2O3 NPs was calculated by determining supernatant Hb concentration at 540 nm. Far-UV CD and Trp/ANS/acrylamide fluorescence spectroscopic methods were used to determine the structural changes of Hb upon interaction with Al2O3 NPs. Theoretical studies were carried out to display the residues involved in the binding site of Hb with Al2O3 nanocluster as well as the structural changes of Hb after interaction. The results showed that the percentage of hemolysis of extract and direct contact assays induced by Al2O3 NPs were 1.16 and 0.46, respectively. Fluorescence spectroscopy revealed that Al2O3 NPs alter the quaternary structure of the protein; however, CD spectroscopy indicated that the secondary structure of Hb remains almost unchanged. Theoretical study displayed that Al2O3 nanocluster interacts with different residues of protein, and Hb tends to be destabilized at the binding site with nanocluster. This study may be significant in exploring the toxicity profile of Al2O3 NPs for their in vivo implementations.


Assuntos
Óxido de Alumínio/química , Óxido de Alumínio/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemoglobinas/química , Conformação Proteica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Análise Espectral
15.
Int J Nanomedicine ; 14: 3995-4005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213811

RESUMO

Purpose: Since nanoparticles (NPs) are beginning to be introduced in medicine and industry, it is mendatory to evaluate their biological side-effects, among other things. The present study aimed to investigate the pathways by which nickel nanoparticles (NiNPs) enter nephrons and to evaluate their localization and effects on cellular ultrastructure. Methods: Rats were injected intraperitoneally with 20 nm NiNPs (20 mg/Kg/b.w./day) for 28 consecutive days. Transmission electron microscope technique was used to detect localization of NiNPs and their effects on cellular ultrastructure in rat kidneys. Additionally, measurements of certain biochemical parameters such as creatinine, urea, uric acid and phosphorus for investigating renal function following NiNPs treatment were taken. Results: The presence of NiNPs in the nephrons in treated rats was confirmed by transmission electron microscopy. NiNPs entered the renal tubules cells via various pathways. The results indicated that NiNPs administration induced ultrastructural changes in the proximal cells of renal tubules and certain glomerular cells (podocytes and mesangial cells). Additionally, NiNPs were found to be localized in the mitochondria, which led to a significant decrease in their density and morphology. Furthermore, cell death was induced in the glomerular cells as found with a Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) assay and through detection of p35 using immunohistochemical staining. Conclusion: Herein, NiNPs were found to induce various cellular ultrastructural changes in the kidneys of rats. NiNPs used diverse pathways to internalize into the cytoplasm of the proximal convoluted tubules (PT) cells across the basement membrane, and also through the plasma membrane of two adjacent PT cells. NiNPs internalization, accumulation and their alterations of the cellular ultrastructure affected rat renal function.


Assuntos
Endocitose , Rim/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Animais , Células Epiteliais/ultraestrutura , Masculino , Células Mesangiais/ultraestrutura , Mitocôndrias/ultraestrutura , Níquel/química , Tamanho da Partícula , Podócitos/ultraestrutura , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...