Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(3): e202312942, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38062619

RESUMO

The development of a small-molecule probe designed to selectively target neurons would enhance the exploration of intricate neuronal structures and functions. Among such probes, NeuO stands out as the pioneer and has gained significant traction in the field of research. Nevertheless, neither the mechanism behind neuron-selectivity nor the cellular localization has been determined. Here, we introduce NeuM, a derivative of NeuO, designed to target neuronal cell membranes. Furthermore, we elucidate the mechanism behind the selective neuronal membrane trafficking that distinguishes neurons. In an aqueous buffer, NeuM autonomously assembles into micellar structures, leading to the quenching of its fluorescence (Φ=0.001). Upon exposure to neurons, NeuM micelles were selectively internalized into neuronal endosomes via clathrin-mediated endocytosis. Through the endocytic recycling pathway, NeuM micelles integrate into neuronal membrane, dispersing fluorescent NeuM molecules in the membrane (Φ=0.61). Molecular dynamics simulations demonstrated that NeuM, in comparison to NeuO, possesses optimal lipophilicity and molecular length, facilitating its stable incorporation into phospholipid layers. The stable integration of NeuM within neuronal membrane allows the prolonged monitoring of neurons, as well as the visualization of intricate neuronal structures.


Assuntos
Clatrina , Micelas , Clatrina/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Neurônios/metabolismo
2.
Bioorg Med Chem ; 95: 117513, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931520

RESUMO

In this article, the development of fluorescent imaging probes for the detection of Alzheimer's disease (AD)-associated protein aggregates is described. Indane derivatives with a donor-π-acceptor (D-π-A) structure were designed and synthesized. The probes were evaluated for their ability to bind to ß-amyloid (Aß) protein aggregates, which are a key pathological hallmark of AD. The results showed that several probes exhibited significant changes in fluorescence intensity at wavelengths greater than 600 nm when they were bound to Aß aggregates compared to the Aß monomeric form. Among the tested probes, four D-π-A type indane derivatives showed promising binding selectivity to Aß aggregates over non-specific proteins such as bovine serum albumin (BSA). The molecular docking study showed that our compounds were appropriately located along the Aß fibril axis through the hydrophobic tunnel structure. Further analysis revealed that the most active compound having dimethylaminopyridyl group as an election donor and dicyano group as an electron acceptor could effectively stain Aß plaques in brain tissue samples from AD transgenic mice. These findings suggest that our indane-based compounds have the potential to serve as fluorescent probes for the detection and monitoring of Aß aggregation in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Corantes Fluorescentes/química , Agregados Proteicos , Simulação de Acoplamento Molecular , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Placa Amiloide/química , Placa Amiloide/diagnóstico , Placa Amiloide/patologia
3.
Exp Mol Med ; 55(3): 612-627, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914856

RESUMO

Tau oligomers play critical roles in tau pathology and are responsible for neuronal cell death and transmitting the disease in the brain. Accordingly, preventing tau oligomerization has become an important therapeutic strategy to treat tauopathies, including Alzheimer's disease. However, progress has been slow because detecting tau oligomers in the cellular context is difficult. Working toward tau-targeted drug discovery, our group has developed a tau-BiFC platform to monitor and quantify tau oligomerization. By using the tau-BiFC platform, we screened libraries with FDA-approved and passed phase I drugs and identified levosimendan as a potent anti-tau agent that inhibits tau oligomerization. 14C-isotope labeling of levosimendan revealed that levosimendan covalently bound to tau cysteines, directly inhibiting disulfide-linked tau oligomerization. In addition, levosimendan disassembles tau oligomers into monomers, rescuing neurons from aggregation states. In comparison, the well-known anti-tau agents methylene blue and LMTM failed to protect neurons from tau-mediated toxicity, generating high-molecular-weight tau oligomers. Levosimendan displayed robust potency against tau oligomerization and rescued cognitive declines induced by tauopathy in the TauP301L-BiFC mouse model. Our data present the potential of levosimendan as a disease-modifying drug for tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Proteínas tau/metabolismo , Simendana/farmacologia , Simendana/uso terapêutico , Simendana/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Tauopatias/patologia , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
4.
Pak J Pharm Sci ; 35(1(Supplementary)): 177-182, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35228175

RESUMO

A green ultrasound assisted convenient approach has been reported for the ring opening of epoxides. As a result, a series of N-phenyl piperazine and morpholine based ß-amino alcohols has been synthesized under ultrasound irradiation in DMSO for 60 minutes at 70°C. This methodology showed excellent tolerance with various epoxides and provided excellent yields upto 96%. All the synthetic derivatives (4a-e) (5c-d) significantly influence the catalytic activity of protease while 5d exhibited maximum (100%) inhibitory effect with a half-life of 40.76 minutes. Among the target derivatives, compound 4c exhibited significant antibacterial activity against Bacillus subtilis and Escherichia coli bacterial strains with zone of inhibition values 45 mm and 32 mm, respectively.


Assuntos
Aminoácidos/farmacologia , Antibacterianos/farmacologia , Compostos de Epóxi/química , Inibidores de Proteases/farmacologia , Aminoácidos/síntese química , Relação Estrutura-Atividade
5.
Bioact Mater ; 13: 239-248, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35224305

RESUMO

The pathological origin of Alzheimer's disease (AD) is still shrouded in mystery, despite intensive worldwide research efforts. The selective visualization of ß-amyloid (Aß), the most abundant proteinaceous deposit in AD, is pivotal to reveal AD pathology. To date, several small-molecule fluorophores for Aß species have been developed, with increasing binding affinities. In the current work, two organic small-molecule dioxaborine-derived fluorophores were rationally designed through tailoring the hydrophobicity with the aim to enhance the binding affinity for Aß1-42 fibrils -while concurrently preventing poor aqueous solubility-via biannulate donor motifs in D-π-A dyes. An unprecedented sub-nanomolar affinity was found (K d = 0.62 ± 0.33 nM) and applied to super-sensitive and red-emissive fluorescent staining of amyloid plaques in cortical brain tissue ex vivo. These fluorophores expand the dioxaborine-curcumin-based family of Aß-sensitive fluorophores with a promising new imaging agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...