Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Neurooncol Pract ; 11(2): 115-124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38496911

RESUMO

Background: The outcomes of nonbenign (WHO Grades 2 and 3 [G2, G3]) meningiomas are suboptimal and radiotherapy (RT) dose intensification strategies have been investigated. The purpose of this review is to report on clinical practice and outcomes with particular attention to RT doses and techniques. Methods: The PICO criteria (Population, Intervention, Comparison, and Outcomes) were used to frame the research question, directed at outlining the clinical outcomes in patients with G2-3 meningiomas treated with RT. The same search strategy was run in Embase and MEDLINE and, after deduplication, returned 1 807 records. These were manually screened for relevance and 25 were included. Results: Tumor outcomes and toxicities are not uniformly reported in the selected studies since different endpoints and time points have been used by different authors. Many risk factors for worse outcomes are described, the most common being suboptimal RT. This includes no or delayed RT, low doses, and older techniques. A positive association between RT dose and progression-free survival (PFS) has been highlighted by analyzing the studies in this review (10/25) that report the same endpoint (5y-PFS). Conclusions: This literature review has shown that standard practice RT leads to suboptimal tumor control rates in G2-3 meningiomas, with a significant proportion of disease recurring after a relatively short follow-up. Randomized controlled trials are needed in this setting to define the optimal RT approach. Given the increasing data to suggest a benefit of higher RT doses for high-risk meningiomas, novel RT technologies with highly conformal dose distributions are preferential to achieve optimal target coverage and organs at risk sparing.

2.
Br J Radiol ; 97(1156): 757-762, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38407369

RESUMO

OBJECTIVES: Metallic implants cause artefacts and distortion on MRI. To ensure accurate dose delivery and plan adaptation on an MR Linac, there is a need to evaluate distortion caused. METHODS: Participants were imaged on an MR Linac (Elekta Unity, Elekta AB Stockholm). Three sequences were evaluated. Two vendor supplied (T2W TSE 3D), and one T2W TSE 3D optimized to reduce metal artefact distortions. Images were rigidly registered to CT images by a single observer, using bony anatomy. Three coronal and three axial images were selected, and six paired, adjacent, bony landmarks were identified on each slice. Images bisecting treatment isocentre were included. Difference between landmark coordinates was taken to be measure of distortion. RESULTS: Five observers participated. Thirty six pairs of bony landmarks were identified. Median difference in position of landmarks was ≤3 mm (range 0.3-4.4 mm). One-way analysis of variance (ANOVA) between observer means showed no significant variation between sequences or patients (P = 1.26 in plane, P = 0.11 through plane). Interobserver intra class correlation (ICC) was 0.70 in-plane and 0.78 through-plane. Intra-observer ICC for three observers was 0.76, 0.81, 0.83, showing moderate to good reliability on this small cohort. CONCLUSIONS: This in-vivo feasibility study suggests distortion due to metallic hip prosthesis is not an obstacle for pelvic radiotherapy on an MR Linac. Research on the impact on plan quality is warranted. ADVANCES IN KNOWLEDGE: This work supports feasibility of treating patients with metallic hip prosthesis on an MR Linac.


Assuntos
Prótese de Quadril , Neoplasias da Próstata , Masculino , Humanos , Prótese de Quadril/efeitos adversos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Aceleradores de Partículas
3.
Radiother Oncol ; 190: 109963, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38406888

RESUMO

BACKGROUND: Implementation of daily cone-beam CT (CBCT) into clinical practice in paediatric image-guided radiotherapy (IGRT) lags behind compared to adults. Surveys report wide variation in practice for paediatric IGRT and technical information remains unreported. In this study we report on technical settings from applied paediatric CBCT protocols and review the literature for paediatric CBCT protocols. METHODS: From September to October 2022, a survey was conducted among 246 SIOPE-affiliated centres across 35 countries. The survey consisted of 3 parts: 1) baseline information; technical CBCT exposure settings and patient set-up procedure for 2) brain/head, and 3) abdomen. Descriptive statistics was used to summarise current practice. The literature was reviewed systematically with two reviewers obtaining consensus RESULTS: The literature search revealed 22 papers concerning paediatric CBCT protocols. Seven papers focused on dose-optimisation. Responses from 50/246 centres in 25/35 countries were collected: 44/50 treated with photons and 10/50 with protons. In total, 48 brain/head and 53 abdominal protocols were reported. 42/50 centres used kV-CBCT for brain/head and 35/50 for abdomen; daily CBCT was used for brain/head = 28/48 (58%) and abdomen = 33/53 62%. Greater consistency was seen in brain/head protocols (dose range 0.32 - 67.7 mGy) compared to abdominal (dose range 0.27 - 119.7 mGy). CONCLUSION: Although daily CBCT is now widely used in paediatric IGRT, our survey demonstrates a wide range of technical settings, suggesting an unmet need to optimise paediatric IGRT protocols. This is in accordance with the literature. However, there are only few paediatric optimisation studies suggesting that dose reduction is possible while maintaining image quality.


Assuntos
Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Adulto , Humanos , Criança , Radioterapia Guiada por Imagem/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Abdome , Tomografia Computadorizada de Feixe Cônico/métodos , Europa (Continente) , Imagens de Fantasmas , Dosagem Radioterapêutica , Literatura de Revisão como Assunto
5.
Eur J Heart Fail ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059343

RESUMO

Cardio-oncology is a rapidly growing field of cardiovascular (CV) medicine that has resulted from the continuously increasing clinical demand for specialized CV evaluation, prevention and management of patients suffering or surviving from malignant diseases. Dealing with CV disease in patients with cancer requires special knowledge beyond that included in the general core curriculum for cardiology. Therefore, the European Society of Cardiology (ESC) has developed a special core curriculum for cardio-oncology, a consensus document that defines the level of experience and knowledge required for cardiologists in this particular field. It is structured into 8 chapters, including (i) principles of cancer biology and therapy; (ii) forms and definitions of cancer therapy-related cardiovascular toxicity (CTR-CVT); (iii) risk stratification, prevention and monitoring protocols for CTR-CVT; (iv) diagnosis and management of CV disease in patients with cancer; (v) long-term survivorship programmes and cardio-oncology rehabilitation; (vi) multidisciplinary team management of special populations; (vii) organization of cardio-oncology services; (viii) research in cardio-oncology. The core curriculum aims at promoting standardization and harmonization of training and evaluation in cardio-oncology, while it further provides the ground for an ESC certification programme designed to recognize the competencies of certified specialists.

6.
Clin Transl Radiat Oncol ; 43: 100681, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37790584

RESUMO

Background and purpose: Children receiving radiotherapy for head-and-neck tumours often experience severe dentofacial side effects. Despite this, recommendations for contouring and dose constraints to dentofacial structures are lacking in clinical practice. We report on a survey aiming to understand current practice in contouring and dose assessment to dentofacial structures. Methods: A digital survey was distributed to European Society for Paediatric Oncology members of the Radiation Oncology Working Group, and member-affiliated centres in Europe, Australia, and New Zealand. The questions focused on clinical practice and aimed to establish areas for future development. Results: Results from 52 paediatric radiotherapy centres across 27 countries are reported. Only 29/52 centres routinely delineated some dentofacial structures, with the most common being the mandible (25 centres), temporo-mandibular joint (22), dentition (13), orbit (10) and maxillary bone (eight). For most bones contoured, an 'As Low As Reasonably Achievable' dose objective was implemented. Only four centres reported age-adapted dose constraints.The largest barrier to clinical implementation of dose constraints was firstly, the lack of contouring guidance (49/52, 94%) and secondly, that delineation is time-consuming (33/52, 63%). Most respondents who routinely contour dentofacial structures (25/27, 90%) agreed a contouring atlas would aid delineation. Conclusion: Routine delineation of dentofacial structures is infrequent in paediatric radiotherapy. Based on survey findings, we aim to 1) define a consensus-contouring atlas for dentofacial structures, 2) develop auto-contouring solutions for dentofacial structures to aid clinical implementation, and 3) carry out treatment planning studies to investigate the importance of delineation of these structures for planning optimisation.

9.
Breast ; 72: 103578, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713940

RESUMO

BACKGROUND: Normal tissue complication probability (NTCP) models can be useful to estimate the risk of fibrosis after breast-conserving surgery (BCS) and radiotherapy (RT) to the breast. However, they are subject to uncertainties. We present the impact of contouring variation on the prediction of fibrosis. MATERIALS AND METHODS: 280 breast cancer patients treated BCS-RT were included. Nine Clinical Target Volume (CTV) contours were created for each patient: i) CTV_crop (reference), cropped 5 mm from the skin and ii) CTV_skin, uncropped and including the skin, iii) segmenting the 95% isodose (Iso95%) and iv) 3 different auto-contouring atlases generating uncropped and cropped contours (Atlas_skin/Atlas_crop). To illustrate the impact of contour variation on NTCP estimates, we applied two equations predicting fibrosis grade ≥ 2 at 5 years, based on Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) models, respectively, to each contour. Differences were evaluated using repeated-measures ANOVA. For completeness, the association between observed fibrosis events and NTCP estimates was also evaluated using logistic regression. RESULTS: There were minimal differences between contours when the same contouring approach was followed (cropped and uncropped). CTV_skin and Atlas_skin contours had lower NTCP estimates (-3.92%, IQR 4.00, p < 0.05) compared to CTV_crop. No significant difference was observed for Atlas_crop and Iso95% contours compared to CTV_crop. For the whole cohort, NTCP estimates varied between 5.3% and 49.5% (LKB) or 2.2% and 49.6% (RS) depending on the choice of contours. NTCP estimates for individual patients varied by up to a factor of 4. Estimates from "skin" contours showed higher agreement with observed events. CONCLUSION: Contour variations can lead to significantly different NTCP estimates for breast fibrosis, highlighting the importance of standardising breast contours before developing and/or applying NTCP models.


Assuntos
Neoplasias da Mama , Doença da Mama Fibrocística , Feminino , Humanos , Dosagem Radioterapêutica , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Mama/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador , Probabilidade , Fibrose
10.
Radiother Oncol ; 188: 109868, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683811

RESUMO

Voxel-based analysis (VBA) allows the full, 3-dimensional, dose distribution to be considered in radiotherapy outcome analysis. This provides new insights into anatomical variability of pathophysiology and radiosensitivity by removing the need for a priori definition of organs assumed to drive the dose response associated with patient outcomes. This approach may offer powerful biological insights demonstrating the heterogeneity of the radiobiology across tissues and potential associations of the radiotherapy dose with further factors. As this methodological approach becomes established, consideration needs to be given to translating VBA results to clinical implementation for patient benefit. Here, we present a comprehensive roadmap for VBA clinical translation. Technical validation needs to demonstrate robustness to methodology, where clinical validation must show generalisability to external datasets and link to a plausible pathophysiological hypothesis. Finally, clinical utility requires demonstration of potential benefit for patients in order for successful translation to be feasible. For each step on the roadmap, key considerations are discussed and recommendations provided for best practice.

11.
Phys Med ; 112: 102652, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37552912

RESUMO

PURPOSE: The National Health Service (NHS) in the United Kingdom (UK) is aiming to be carbon net zero by 2040 to help limit the dangerous effects of climate change. Radiotherapy contributes to this with potential sources quantified here. METHOD: Activity data for 42 patients from within the breast IMRT and prostate VMAT pathways were collected. Data for 20 prostate patients was also collected from 3 other centres to enable cross centre comparison. A process-based, bottom-up approach was used to calculate the carbon footprint. Additionally, patients were split into pre-COVID and COVID groups to assess the impact of protocol changes due to the pandemic. RESULTS: The calculated carbon footprint for prostate and breast pre-COVID were 148 kgCO2e and 101 kgCO2e respectively, and 226 kgCO2e and 75 kgCO2e respectively during COVID. The energy usage by the linac during treatment for a total course of radiotherapy for prostate treatments was 2-3 kWh and about 1 kWh for breast treatments. Patient travel made up the largest proportion (70-80%) of the calculated carbon footprint, with linac idle power second with âˆ¼ 10% and PPE and SF6 leakage were both between 2 and 4%. CONCLUSION: These initial findings highlight that the biggest contributor to the external beam radiotherapy carbon footprint was patient travel, which may motivate increased used of hypofractionation. Many assumptions and boundaries have been set on the data gathered, which limit the wider application of these results. However, they provide a useful foundation for future more comprehensive life cycle assessments.


Assuntos
COVID-19 , Pegada de Carbono , Masculino , Humanos , Medicina Estatal , COVID-19/radioterapia , Reino Unido , Próstata
12.
Radiother Oncol ; 185: 109734, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301263

RESUMO

The use of breath-hold techniques in radiotherapy, such as deep-inspiration breath hold, is increasing although guidelines for clinical implementation are lacking. In these recommendations, we aim to provide an overview of available technical solutions and guidance for best practice in the implementation phase. We will discuss specific challenges in different tumour sites including factors such as staff training and patient coaching, accuracy, and reproducibility. In addition, we aim to highlight the need for further research in specific patient groups. This report also reviews considerations for equipment, staff training and patient coaching, as well as image guidance for breath-hold treatments. Dedicated sections for specific indications, namely breast cancer, thoracic and abdominal tumours are also included.


Assuntos
Neoplasias da Mama , Suspensão da Respiração , Humanos , Feminino , Reprodutibilidade dos Testes , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Mama/radioterapia , Dosagem Radioterapêutica
14.
Cancers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37173955

RESUMO

BACKGROUND: Stereotactic ablative radiotherapy (SABR) and stereotactic radiosurgery (SRS) with conventional photon radiotherapy (XRT) are well-established treatment options for selected patients with oligometastatic/oligorecurrent disease. The use of PBT for SABR-SRS is attractive given the property of a lack of exit dose. The aim of this review is to evaluate the role and current utilisation of PBT in the oligometastatic/oligorecurrent setting. METHODS: Using Medline and Embase, a comprehensive literature review was conducted following the PICO (Patients, Intervention, Comparison, and Outcomes) criteria, which returned 83 records. After screening, 16 records were deemed to be relevant and included in the review. RESULTS: Six of the sixteen records analysed originated in Japan, six in the USA, and four in Europe. The focus was oligometastatic disease in 12, oligorecurrence in 3, and both in 1. Most of the studies analysed (12/16) were retrospective cohorts or case reports, two were phase II clinical trials, one was a literature review, and one study discussed the pros and cons of PBT in these settings. The studies presented in this review included a total of 925 patients. The metastatic sites analysed in these articles were the liver (4/16), lungs (3/16), thoracic lymph nodes (2/16), bone (2/16), brain (1/16), pelvis (1/16), and various sites in 2/16. CONCLUSIONS: PBT could represent an option for the treatment of oligometastatic/oligorecurrent disease in patients with a low metastatic burden. Nevertheless, due to its limited availability, PBT has traditionally been funded for selected tumour indications that are defined as curable. The availability of new systemic therapies has widened this definition. This, together with the exponential growth of PBT capacity worldwide, will potentially redefine its commissioning to include selected patients with oligometastatic/oligorecurrent disease. To date, PBT has been used with encouraging results for the treatment of liver metastases. However, PBT could be an option in those cases in which the reduced radiation exposure to normal tissues leads to a clinically significant reduction in treatment-related toxicities.

15.
Phys Imaging Radiat Oncol ; 26: 100442, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37197154

RESUMO

Background and purpose: Anatomical changes may compromise the planned target coverage and organs-at-risk dose in particle therapy. This study reports on the practice patterns for adaptive particle therapy (APT) to evaluate current clinical practice and wishes and barriers to further implementation. Materials and methods: An institutional questionnaire was distributed to PT centres worldwide (7/2020-6/2021) asking which type of APT was used, details of the workflow, and what the wishes and barriers to implementation were. Seventy centres from 17 countries participated. A three-round Delphi consensus analysis (10/2022) among the authors followed to define recommendations on required actions and future vision. Results: Out of the 68 clinically operational centres, 84% were users of APT for at least one treatment site with head and neck being most common. APT was mostly performed offline with only two online APT users (plan-library). No centre used online daily re-planning. Daily 3D imaging was used for APT by 19% of users. Sixty-eight percent of users had plans to increase their use or change their technique for APT. The main barrier was "lack of integrated and efficient workflows". Automation and speed, reliable dose deformation for dose accumulation and higher quality of in-room volumetric imaging were identified as the most urgent task for clinical implementation of online daily APT. Conclusion: Offline APT was implemented by the majority of PT centres. Joint efforts between industry research and clinics are needed to translate innovations into efficient and clinically feasible workflows for broad-scale implementation of online APT.

16.
Phys Imaging Radiat Oncol ; 26: 100439, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124167

RESUMO

Background and purpose: Organ motion compromises accurate particle therapy delivery. This study reports on the practice patterns for real-time intrafractional motion-management in particle therapy to evaluate current clinical practice and wishes and barriers to implementation. Materials and methods: An institutional questionnaire was distributed to particle therapy centres worldwide (7/2020-6/2021) asking which type(s) of real-time respiratory motion management (RRMM) methods were used, for which treatment sites, and what were the wishes and barriers to implementation. This was followed by a three-round DELPHI consensus analysis (10/2022) to define recommendations on required actions and future vision. With 70 responses from 17 countries, response rate was 100% for Europe (23/23 centres), 96% for Japan (22/23) and 53% for USA (20/38). Results: Of the 68 clinically operational centres, 85% used RRMM, with 41% using both rescanning and active methods. Sixty-four percent used active-RRMM for at least one treatment site, mostly with gating guided by an external marker. Forty-eight percent of active-RRMM users wished to expand or change their RRMM technique. The main barriers were technical limitations and limited resources. From the DELPHI analysis, optimisation of rescanning parameters, improvement of motion models, and pre-treatment 4D evaluation were unanimously considered clinically important future focus. 4D dose calculation was identified as the top requirement for future commercial treatment planning software. Conclusion:  A majority of particle therapy centres have implemented RRMM. Still, further development and clinical integration were desired by most centres. Joint industry, clinical and research efforts are needed to translate innovation into efficient workflows for broad-scale implementation.

17.
BJR Open ; 5(1): 20230012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035769

RESUMO

Objectives: Proton therapy has a theoretical dosimetric advantage due to the Bragg peak, but the linear energy transfer (LET), and therefore the relative biological effectiveness (RBE), increase at the end of range. For patients with Hodgkin lymphoma, the distal edge of beam is often located within or close to the heart, where elevated RBE would be of potential concern. The purpose of this study was to investigate the impact of RBE and the choice of beam arrangement for adolescent patients with mediastinal Hodgkin lymphoma. Methods: For three previously treated adolescent patients, proton plans with 1-3 fields were created to a prescribed dose of 19.8 Gy (RBE) in 11 fractions (Varian Eclipse v13.7), assuming an RBE of 1.1. Plans were recalculated using Monte-Carlo (Geant4 v10.3.3/Gate v8.1) to calculate dose-averaged LET. Variable RBE-weighted dose was calculated using the McNamara model, assuming an α/ß ratio of 2 Gy for organs-at-risk. Results: Although the LET decreased as the number of fields increased, the difference in RBE-weighted dose (Δdose) to organs-at-risk did not consistently decrease. Δdose values varied by patient and organ and were mostly of the order of 0-3 Gy (RBE), with a worst-case of 4.75 Gy (RBE) in near-maximum dose to the left atrium for one plan. Conclusions: RBE-weighted doses to organs-at-risk are sensitive to the choice of RBE model, which is of particular concern for the heart. Advances in knowledge: There is a need to remain cautious when evaluating proton plans for Hodgkin lymphoma, especially when near-maximum doses to organs-at-risk are considered.

18.
Artigo em Inglês | MEDLINE | ID: mdl-37061912

RESUMO

PURPOSE: Radiation therapy (RT) is an essential component in the treatment of many pediatric malignancies. Thoracic RT may expose the heart to radiation dose and thereby increase the risk of late cardiac disease. This comprehensive review from the Pediatric Normal Tissue Effects in the Clinic (PENTEC) initiative focused on late cardiac disease in survivors of childhood cancer treated with RT. METHODS AND MATERIALS: This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. We identified 1496 articles; 4 were included for dose-response modeling between mean cardiac radiation dose and risk of late coronary artery disease, heart failure (HF), valvular disease, and any cardiac disease. RESULTS: For each 10-Gy increase in corrected mean cardiac radiation dose in 1.8- to 2.0-Gy fractions, we estimated a hazard ratio of 2.01 (95% confidence interval [CI], 1.79-2.25) for coronary artery disease, of 1.87 (95% CI, 1.70-2.06) for HF, of 1.87 (95% CI, 1.78-1.96) for valvular disease, and of 1.88 (95% CI, 1.75-2.03) for any cardiac disease. From the same model, for each 100-mg/m2 increase in cumulative anthracycline dose, the hazard ratio for the development of HF was 1.93 (95% CI, 1.58-2.36), equivalent to an increase in mean heart dose of approximately 10.5 Gy. Other nontreatment factors were inconsistently reported in the analyzed articles. CONCLUSIONS: Radiation dose to the heart increases the risk of late cardiac disease, but survivors of childhood cancer who receive a mean dose <10 Gy at standard fractionation are at low absolute risk (<∼2% approximately 30 years after exposure) of late cardiac disease in the absence of anthracycline exposure. Minimizing cardiac radiation dose is especially relevant in children receiving anthracyclines. When cardiac sparing is not possible, we recommend prioritizing target coverage. It is likely that individual cardiac substructure doses will be a better predictor of specific cardiac diseases than mean dose, and we urge the pediatric oncology community to further study these relationships.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37003845

RESUMO

PURPOSE: We describe the methods used to estimate the accuracy of dosimetric data found in literature sources used to construct the Pediatric Normal Tissue Effects in the Clinic (PENTEC) dose-response models, summarize these findings of each organ-specific task force, describe some of the dosimetric challenges and the extent to which these efforts affected the final modeling results, and provide guidance on the interpretation of the dose-response results given the various dosimetric uncertainties. METHODS AND MATERIALS: Each of the PENTEC task force medical physicists reviewed all the journal articles used for dose-response modeling to identify, categorize, and quantify dosimetric uncertainties. These uncertainties fell into 6 broad categories. A uniform nomenclature was developed for describing the "dosimetric quality" of the articles used in the PENTEC reviews. Among the multidisciplinary experts in the PENTEC effort, the medical physicists were charged with the dosimetric evaluation, as they are most expert in this subject. RESULTS: The percentage dosimetric uncertainty was estimated for each late effect endpoint for all PENTEC organ reports. Twelve specific sources of dose uncertainty were identified related to the 6 broad categories. The most common reason for organ dose uncertainty was that prescribed dose rather than organ dose was reported. Percentage dose uncertainties ranged from 5% to 200%. Systematic uncertainties were used to correct the dose component of the models. Random uncertainties were also described in each report and in some cases used to modify dose axis error bars. In addition, the potential effects of dose binning were described. CONCLUSIONS: PENTEC reports are designed to provide guidance to radiation oncologists and treatment planners for organ dose constraints. It is critical that these dose constraint recommendations are as accurate as possible, acknowledging the large error bars for many. Achieving this accuracy is important as it enables clinicians to better balance target dose coverage with risk of late effects. Evidence-based dose constraints for pediatric patients have been lacking and, in this regard, PENTEC fills an important unmet need. One must be aware of the limitations of our recommendations, and that for some organ systems, large uncertainties exist in the dose-response model because of clinical endpoint uncertainty, dosimetric uncertainty, or both.

20.
Radiother Oncol ; 183: 109602, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889594

RESUMO

INTRODUCTION: Timely access to radiotherapy innovations remains suboptimal, partly because there is no commonly agreed appraisal system suitable for the broad range of radiotherapy interventions. The Health Economics in Radiation Oncology (HERO) programme of ESTRO therefore engaged in building a radiotherapy-specific value-based framework. We report on a first step towards that aim, documenting the available definitions and classification systems for radiotherapy interventions. METHODS: A systematic literature search was carried out in Pubmed and Embase, following PRISMA methodology and using search terms on 'innovation', 'radiotherapy', 'definition' and 'classification'. Data were extracted from articles that met prespecified inclusion criteria. RESULTS: Out of 13,353 articles, 25 met the inclusion criteria, resulting in the identification of 7 definitions of innovation and 15 classification systems applicable to radiation oncology. Iterative appraisal divided the classification systems into two groups. A first group of 11 systems categorized innovations according to the perceived magnitude of innovation, typically 'minor' versus 'major'. The remaining 4 systems categorised innovations according to radiotherapy-specific characteristics, such as the type of radiation equipment or radiobiological properties. Here, commonly used terms as 'technique' or 'treatment' were found to be used in different meanings. DISCUSSION: There is no widely accepted definition or classification system for radiotherapy innovations. The data however suggest that unique properties of radiotherapy interventions can be used to categorise innovations in radiation oncology. Still, there remains a need for clear terminology denoting radiotherapy-specific characteristics. CONCLUSION: Building on this review, the ESTRO-HERO project will define what is required for a radiotherapy-specific value-based assessment tool.


Assuntos
Radioterapia (Especialidade) , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...