Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675193

RESUMO

Recently, we reported a new fibroblast activation protein (FAP) inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-HYNIC-D-Alanine-BoroPro)(99mTc-HYNIC-iFAP) structure for tumor microenvironment SPECT imaging. This research aimed to synthesize 68Ga-[2,2',2″,2‴-(2-(4-(2-(5-(((S)-1-((S)-2-boronopyrrolidin-1-yl)-1-oxopropan-2-yl)carbamoyl)pyridin-2-yl)hydrazine-1-carbothioamido)benzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid] (68Ga-DOTA-D-Alanine-BoroPro)(68Ga-iFAP) as a novel radiotracer for PET imaging and evaluate its usefulness for FAP expression in malignant and non-malignant tissues. The coupling of p-SCN-benzene DOTA with HYNIC-iFAP was used for the chemical synthesis and further labeling with 68Ga. Radiochemical purity was verified by radio-HPLC. The specificity of 68Ga-iFAP was evaluated in HCT116 cells, in which FAP expression was verified by immunofluorescence and Western blot. Biodistribution and biokinetic studies were performed in murine models. 68Ga-iFAP uptake at the myocardial level was assessed in mice with induced infarction. First-in-human images of 68Ga-iFAP in healthy subjects and patients with myocardial infarction, glioblastoma, prostate cancer, and breast cancer were also obtained. DOTA-D-Alanine BoroPro was prepared with a chemical purity of 98% and was characterized by UPLC mass spectroscopy, FT-IR, and UV-vis. The 68Ga-iFAP was obtained with a radiochemical purity of >95%. In vitro and in vivo studies demonstrated 68Ga-iFAP-specific recognition for FAP, rapid renal elimination, and adequate visualization of the glioblastoma, breast tumor, prostate cancer, and myocardial infarction sites. The results of this research justify further dosimetry and clinical trials to establish the specificity and sensitivity of 68Ga-iFAP PET for FAP expression imaging.

2.
Pharmaceutics ; 15(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140003

RESUMO

Recent cancer therapies have focused on reducing immune suppression in the tumor microenvironment to prevent cancer progression and metastasis. PD-1 is a checkpoint protein that stops the immune response and is expressed on immune T cells. Cancer cells express a PD-1 ligand (PD-L1) to bind to the T-cell surface and activate immunosuppressive pathways. This study aimed to design, synthesize, and evaluate a 99mTc-labeled PD-L1-targeting cyclic peptide inhibitor (99mTc-iPD-L1) as a novel SPECT radiopharmaceutical for PD-L1 expression imaging. AutoDock software (version 1.5) was used to perform molecular docking for affinity calculations. The chemical synthesis was based on the coupling reaction of 6-hydrazinylpyridine-3-carboxylic acid with a 14-amino-acid cyclic peptide. iPD-L1 was prepared for 99mTc labeling. Radio-HPLC was used to verify radiochemical purity. The stability of the radiopeptide in human serum was evaluated by HPLC. iPD-L1 specificity was assessed by SDS-PAGE. [99mTc]Tc-iPD-L1 cellular uptake in PD-L1-positive cancer cells (HCC827 and HCT116) and biodistribution in mice with induced tumors were also performed. One patient with advanced plantar malignant melanoma received [99mTc]Tc-iPD-L1. The iPD-L1 ligand (AutoDock affinity: -6.7 kcal/mol), characterized by UPLC mass, FT-IR, and UV-Vis spectroscopy, was obtained with a chemical purity of 97%. The [99mTc]Tc-iPD-L1 was prepared with a radiochemical purity of >90%. In vitro and in vivo analyses demonstrated [99mTc]Tc-iPD-L1 stability (>90% at 24 h) in human serum, specific recognition for PD-L1, high uptake by the tumor (6.98 ± 0.89% ID/g at 1 h), and rapid hepatobiliary and kidney elimination. [99mTc]Tc-iPD-L1 successfully detected PD-L1-positive lesions in a patient with plantar malignant melanoma. The results obtained in this study warrant further dosimetric and clinical studies to determine the sensitivity and specificity of [99mTc]Tc-iPD-L1/SPECT for PD-L1 expression imaging.

3.
Appl Radiat Isot ; 202: 111065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879244

RESUMO

Relative biological effectiveness is a radiobiological parameter relevant in radiotherapy planning and useful in evaluating the physiological impact of radiation in different tissues. Targeted radionuclide therapy allows the selective and specific deposition of higher radiation doses in a noninvasive way and without collateral effects through the administration of radiopharmaceuticals. Lu-DOTA-177(hydrazinylnicotinoyl-Lys-(Nal)-NH-CO-NH-Glu) also called Lu-iPSMA177 is a third generation radiopharmaceutical composed by a peptide that recognizes the prostate-specific membrane antigen (PSMA), a membrane protein overexpressed in several types of cancer and that mediates the radiopharmaceutical's recognition of cancer cells. The present study reports radiobiological parameters of Lu-iPSMA177 and demonstrates the superiority of targeted radiopharmaceuticals over external radiotherapy treatment options in terms of their relative biological effectiveness. The relative biological effectiveness value of 1.020±0.003 for the LINAC, estimated by fitting the linear-quadratic model equation to the resulting survival curves, was like those of 1.25±0.04,1.060±0.005and1.00±0.04 obtained by an alternative method in relation to the mean lethal doses at 90, 80 or 60 survival percent respectively. While the relative biological effectiveness values of 5.65±0.13,4.72±0.27and2.87±0.19 estimated for Lu-iPSMA177 were significantly higher than those for the LINAC. The results confirm that the biological effect produced by the deposition of a radiation absorbed dose delivered by the LINAC can be induced with a quarter of that dose using Lu-iPSMA177 due to the energy distribution, dose-rate and energy fluence.


Assuntos
Radioisótopos , Compostos Radiofarmacêuticos , Masculino , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Eficiência Biológica Relativa , Radioisótopos/uso terapêutico , Lutécio/uso terapêutico
4.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569758

RESUMO

Current cancer therapies focus on reducing immunosuppression and remodeling the tumor microenvironment to inhibit metastasis, cancer progression, and therapeutic resistance. Programmed death receptor 1 (PD-1) is expressed on immune T cells and is one of the so-called checkpoint proteins that can suppress or stop the immune response. To evade the immune system, cancer cells overexpress a PD-1 inhibitor protein (PD-L1), which binds to the surface of T cells to activate signaling pathways that induce immune suppression. This research aimed to synthesize PD-L1 inhibitory peptides (PD-L1-i) labeled with lutetium-177 (177Lu-DOTA-PD-L1-i) and actinium-225 (225Ac-HEHA-PD-L1-i) and to preclinically evaluate their potential as radiopharmaceuticals for targeted radiotherapy at the tumor microenvironment level. Using PD-L1-i peptide as starting material, conjugation with HEHA-benzene-SCN and DOTA-benzene-SCN was performed to yield DOTA-PD-L1-i and HEHA-PD-L1-I, which were characterized by FT-IR, UV-vis spectroscopy, and HPLC. After labeling the conjugates with 225Ac and 177Lu, cellular uptake in HCC827 cancer cells (PD-L1 positive), conjugate specificity evaluation by immunofluorescence, radiotracer effect on cell viability, biodistribution, biokinetics, and assessment of radiation absorbed dose in mice with in duced lung micrometastases were performed. 225Ac-HEHA-PD-L1-i and 177Lu-DOTA-PD-L1-i, obtained with radiochemical purities of 95 ± 3% and 98.5 ± 0.5%, respectively, showed in vitro and in vivo specific recognition for the PD-L1 protein in lung cancer cells and high uptake in HCC287 lung micrometastases (>30% ID). The biokinetic profiles of 177Lu-DOTA-PD-L1-i and 225Ac-DOTA-PD-L1-i showed rapid blood clearance with renal and hepatobiliary elimination and no accumulation in normal tissues. 225Ac-DOTA-PD-L1-i produced a radiation dose of 5.15 mGy/MBq to lung micrometastases. In the case of 177Lu-DOTA-PD-L1-i, the radiation dose delivered to the lung micrometastases was ten times (43 mGy/MBq) that delivered to the kidneys (4.20 mGy/MBq) and fifty times that delivered to the liver (0.85 mGy/MBq). Therefore, the radiotherapeutic PD-L1-i ligands of 225Ac and 177Lu developed in this research could be combined with immunotherapy to enhance the therapeutic effect in various types of cancer.


Assuntos
Antígeno B7-H1 , Compostos Radiofarmacêuticos , Camundongos , Animais , Compostos Radiofarmacêuticos/uso terapêutico , Distribuição Tecidual , Benzeno , Micrometástase de Neoplasia , Espectroscopia de Infravermelho com Transformada de Fourier , Microambiente Tumoral , Lutécio/uso terapêutico , Linhagem Celular Tumoral
5.
Pharmaceutics ; 15(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514174

RESUMO

177Lu-iPSMA is a novel radioligand developed at ININ-Mexico with a high affinity for the PSMA protein heavily expressed in cancer cells of approximately 95% of patients with metastatic castration-resistant prostate cancer (mCRPC). 177Lu-DOTATOC is a patent-free radioligand, molecularly recognized by somatostatin receptors (SSTR-2) overexpressed in cancer cells of about 80% of patients with metastatic gastroenteropancreatic neuroendocrine tumors (GEP-NET). This translational research aimed to determine the efficacy and safety of 177Lu-iPSMA and 177Lu-DOTATOC developed as GMP pharmaceutical formulations for treating progressive and advanced mCRPC and NET. One hundred and forty-five patients with mCRPC and one hundred and eighty-seven subjects with progressive NET (83% GEP-NET and 17% other NET), treated with 177Lu-iPSMA and 177Lu-DOTATOC, respectively, were evaluated. Patients received a mean dose of 7.4 GBq per administration of 177Lu-iPSMA (range 1-5 administrations; 394 treatment doses) or 177Lu-DOTATOC (range 2-8 administrations; 511 treatment doses) at intervals of 1.5-2.5 months. Efficacy was assessed by SPECT/CT or PET/CT. Results were stratified by primary tumor origin and number of doses administered. Patients with mCRPC showed overall survival (OS) of 21.7 months with decreased radiotracer tumor uptake (SUV) and PSA level in 80% and 73% of patients, respectively. In addition, a significant reduction in pain (numerical scale from 10-7 to 3-1) was observed in 88% of patients with bone metastases between one and two weeks after the second injection. In the GEP-NET population, the median progression-free survival was 34.7 months, with an OS of >44.2 months. The treatments were well tolerated. Only ten patients experienced grade ≥ 3 myelosuppression (3% of all patients). The observed safety profiles and favorable therapeutic responses demonstrated the potential of 177Lu-iPSMA and 177Lu-DOTATOC to improve overall survival and quality of life in patients with progressive and advanced mCRPC and NET.

6.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745648

RESUMO

Fibroblast activation protein (FAP) is highly expressed on the cancer-associated fibroblasts (CAF) of the tumor stroma. Recently, we reported the preclinical evaluation and clinical biokinetics of a novel 99mTc-labeled FAP inhibitor radioligand ([99mTc]Tc-iFAP). This research aimed to evaluate [99mTc]Tc-iFAP for the tumor stroma imaging of six different cancerous entities and analyze them from the perspective of stromal heterogeneity. [99mTc]Tc-iFAP was prepared from freeze-dried kits with a radiochemical purity of 98 ± 1%. The study included thirty-two patients diagnosed with glioma (n = 5); adrenal cortex neuroendocrine tumor (n = 1); and breast (n = 21), lung (n = 2), colorectal (n = 1) and cervical (n = 3) cancer. Patients with glioma had been evaluated with a previous cranial MRI scan and the rest of the patients had been involved in a [18F]FDG PET/CT study. All oncological diagnoses were corroborated histopathologically. The patients underwent SPECT/CT brain imaging (glioma) or thoracoabdominal imaging 1 h after [99mTc]Tc-iFAP administration (i.v., 735 ± 63 MBq). The total lesions (n = 111) were divided into three categories: primary tumors (PT), lymph node metastases (LNm), and distant metastases (Dm). [99mTc]Tc-iFAP brain imaging was positive in four high-grade WHO III-IV gliomas and negative in one treatment-naive low-grade glioma. Both [99mTc]Tc-iFAP and [18F]FDG detected 26 (100%) PT, although the number of positive LNm and Dm was significantly higher with [18F]FDG [82 (96%)], in comparison to [99mTc]Tc-iFAP imaging (35 (41%)). Peritoneal carcinomatosis lesions in a patient with recurrent colorectal cancer were only visualized with [99mTc]Tc-iFAP. In patients with breast cancer, a significant positive correlation was demonstrated among [99mTc]Tc-iFAP uptake values (Bq/cm3) of PT and the molecular subtype, being higher for subtypes HER2+ and Luminal B HER2-enriched. Four different CAF subpopulations have previously been described for LNm of breast cancer (from CAF-S1 to CAF-S4). The only subpopulation that expresses FAP is CAF-S1, which is preferentially detected in aggressive subtypes (HER2 and triple-negative), confirming that FAP+ is a marker for poor disease prognosis. The results of this pilot clinical research show that [99mTc]Tc-iFAP SPECT imaging is a promising tool in the prognostic assessment of some solid tumors, particularly breast cancer.

7.
Appl Radiat Isot ; 187: 110331, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35764005

RESUMO

Exposure of biological systems to a radiation absorbed dose produces early and late radiogenic responses, such as ion channel modulation, oxidative stress, cell migration enhancement, and metabolic changes that could impact the efficiency of radiotherapy. To understand how radiation modulates ion channels, we irradiated HEK cells stably expressing the human ether à-go-go potassium channel-1 with gamma photons in the dose range of 2-10 Gy (60Co, 0.2 Gy/min) and measured ionic currents generated by the channel. The importance of the Kv10.1 modulation by gamma radiation was studied using cell proliferation. Results showed that a radiation-absorbed dose of 4 Gy significantly reduced the Kv10.1-evoked currents by depolarizing pulses between -100 mV and +50 mV. Additionally, the expression of Kv10.1 positively modulates HEK293 proliferation and, certainly, prevents the effect of gamma radiation on this phenomenon. Results allow concluding that the modulation of the functional expression of the Kv10.1 channel, induced by gamma radiation, leads to the expression of a radioresistant phenotype in Kv10.1 expressing cells.


Assuntos
Raios gama , Proliferação de Células , Células HEK293 , Humanos
8.
Appl Radiat Isot ; 184: 110157, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35278999

RESUMO

According to the National Institute of Public Health, prostate cancer (PCa) is the leading cause of cancer death in Mexican men, highly associated with aggressiveness, resistance to treatment, and metastatic spread (Bharti et al., 2019) mediated by activation of the hypoxia-inducible factor 1 (HIF-1α). The objective of the present study was to evaluate the participation of HIF-1α activation in the radiobiological response of the human prostate adenocarcinoma cell line LNCaP, describing the phenomena with a mathematical model. Four groups were formed under different exposure conditions, including hypoxic cells treated with CoCl2 (300 µM for 22 h) with or without hypoxia-inducible factor inhibitor (150 nM chetomin for 4 h added after an incubation period of 18 h with CoCl2, just before completing the incubation period of 22 h). They were exposed to a source of 60Co in a dose range between 2 and 10 Gy to obtain survival curves that are fitted to a mathematical model. CoCl2 or chetomin treatments do not affect the viability of LNCaP cells that remained unchanged after irradiation. CoCl2 induced hypoxia reduces the survivability of LNCaP, and obstruction of HIF-1α signaling with chetomine produces a slight radioprotective effect. As others report, the genetic reprogramming induced by HIF-1α activation acts as an intrinsic agent that selects cells with more aggressive behavior (Pressley et al., 2017), while chetomin protects cells from death due to its scavenger properties. Interestingly, treatment with chetomin of cells induced to hypoxia (HIF-1 activation with CoCl2) produces a significant reduction in the radioresistance of LNCaP cells, demonstrating that the simultaneous use of chetomin and gamma radiation is an effective option for the treatment of hypoxic prostate cancer. At the molecular level, we suggest that the selective force exerted by HIF-1α depends on the production of free radicals by radiation. The proposed mathematical model showed that the rate of change in cell survival as a function of radiation dose is proportional to the product of two functions, one that describes cell death and the other that describes natural or artificial resistance to radiation.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias da Próstata , Transdução de Sinais , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Hipóxia Tumoral
9.
Molecules ; 27(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35011496

RESUMO

Fibroblast activation protein (FAP) is expressed in the microenvironment of most human epithelial tumors. 68Ga-labeled FAP inhibitors based on the cyanopyrrolidine structure (FAPI) are currently used for the detection of the tumor microenvironment by PET imaging. This research aimed to design, synthesize and preclinically evaluate a new FAP inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-iFAP) structure for SPECT imaging. Molecular docking for affinity calculations was performed using the AutoDock software. The chemical synthesis was based on a series of coupling reactions of 6-hidrazinylnicotinic acid (HYNIC) and D-alanine to a boronic acid derivative. The iFAP was prepared as a lyophilized formulation based on EDDA/SnCl2 for labeling with 99mTc. The radiochemical purity (R.P.) was verified via ITLC-SG and reversed-phase radio-HPLC. The stability in human serum was evaluated by size-exclusion HPLC. In vitro cell uptake was assessed using N30 stromal endometrial cells (FAP positive) and human fibroblasts (FAP negative). Biodistribution and tumor uptake were determined in Hep-G2 tumor-bearing nude mice, from which images were acquired using a micro-SPECT/CT. The iFAP ligand (Ki = 0.536 nm, AutoDock affinity), characterized by UV-Vis, FT-IR, 1H-NMR and UPLC-mass spectroscopies, was synthesized with a chemical purity of 92%. The 99mTc-iFAP was obtained with a R.P. >98%. In vitro and in vivo studies indicated high radiotracer stability in human serum (>95% at 24 h), specific recognition for FAP, high tumor uptake (7.05 ± 1.13% ID/g at 30 min) and fast kidney elimination. The results found in this research justify additional dosimetric and clinical studies to establish the sensitivity and specificity of the 99mTc-iFAP.


Assuntos
Endopeptidases/metabolismo , Neoplasias Hepáticas Experimentais , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Compostos de Organotecnécio , Compostos Radiofarmacêuticos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tecnécio , Animais , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/diagnóstico por imagem , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos de Organotecnécio/química , Compostos de Organotecnécio/farmacocinética , Compostos de Organotecnécio/farmacologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/farmacologia , Tecnécio/química , Tecnécio/farmacocinética , Tecnécio/farmacologia
10.
J Environ Sci Health B ; 56(10): 877-883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34486949

RESUMO

The objectives of this study were to examine cytotoxic and genotoxic damage in human BJ fibroblasts caused by three pesticides used worldwide by trypan blue dye exclusion assays and to measure the relative level of phosphorylated histone H2A.X by flow cytometry at different concentrations. Captan-based fungicide and methyl thiophanate-based fungicide (100 and 1000 µΜ) showed immediate cytotoxic effects; furthermore, after 24 h, captan-based fungicide, chlorothalonil-based fungicide and methyl thiophanate-based fungicide caused cytotoxic effects in the concentration ranges of 40-100 µM, 30-100 µM and 150-1000 µM, respectively. All fungicides generated DNA damage in the treated cells by activating ATM and H2A.X sensor proteins. The three fungicides tested generated DNA double-stranded breaks and showed cytotoxicity at concentrations 33, 34, and 5 times lower (captan, chlorothalonil and thiophanate-methyl respectively) than those used in the field, as recommended by the manufacturers.


Assuntos
Fungicidas Industriais , Tiofanato , Captana , Dano ao DNA , Fibroblastos , Fungicidas Industriais/toxicidade , Humanos , Nitrilas , Tiofanato/toxicidade
11.
Appl Radiat Isot ; 176: 109898, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418726

RESUMO

The recent use of prostate-specific membrane antigen as a biological target have improved the theragnostic approach to prostate and other types of cancer. Radiopharmaceuticals based on PSMA inhibitors radiolabeled with beta emitters as Lutetium-177 have demonstrated remarkable efficacy and safety, however, their clinical evaluation have also shown that therapeutic response of bone located metastases is poorer than that presented by soft tissue lesions. These observations conducted to the development and study at different levels of PSMA-targeting alpha-particle therapy exhibiting effective and promising antitumor activity. However, some aspects of the use of alpha emitters such as cellular dosimetry should be considered before applying them safely. The aim of the present work was to compare and calculate the absorbed dose of 177Lu-iPSMA and 225Ac-iPSMA using an animal bone metastasis model and experimental data obtained from cellular fractionation. The number of disintegrations and the dose factors for the theragnostic iPSMA pair, molecule that can be radiolabeled with 177Lu or 225Ac, were determined based on MIRD methodology, and used to calculate the absorbed dose to cell nucleus. A five times difference between 225Ac-iPSMA and 177Lu-iPSMA average dose rate to the tumor was calculated, being 2.3 ± 0.037 for the first and 0.5 ± 0.018 Gy for the second, both for each activity unit (MBq) administered.


Assuntos
Actínio/análise , Neoplasias Ósseas/secundário , Lutécio/análise , Radioisótopos/análise , Radiometria/métodos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos Nus , Metástase Neoplásica
12.
IEEE Trans Biomed Eng ; 68(5): 1467-1476, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33245692

RESUMO

OBJECTIVE: an innovative non-thermal plasma (NTP) system constituted by a radiofrequency (RF) power generator directly coupled to a treatment probe is described and characterized. This system is intended to be applied as a medical device for therapeutic treatments. METHODS: electrical characterization of the radiofrequency power generator supplying the treatment probe was performed. Meanwhile, generated NTP was optically analyzed. Obtained data were studied to establish the safety profile of plasma application on heat sensitive matter. RESULTS: the NTP system was validated through bacterial deactivation trials, as well as, of being capable of deactivating carcinogenic cells. Besides promoting and accelerating wound closure in vivo performed in mice, demonstrating faster healing than that done with conventional treatments. CONCLUSION: the NTP system's characterization is an essential stage to determine the adequate application of the generated plasma over organic media. The therapeutic benefits of the NTP system were proved by the development of in vivo experiences involving laboratory mice. SIGNIFICANCE: the generated NTP interacts with surrounding air particles producing reactive oxygen and nitrogen species, which, exhibit bactericidal and antiseptic effects due to their strong biochemical reactivity; functioning like critical mediators in animal physiology and promoting wound healing processes. These properties make the NTP system a feasible technology intended for therapeutic treatments.


Assuntos
Gases em Plasma , Animais , Camundongos
13.
Contrast Media Mol Imaging ; 2020: 2525037, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410920

RESUMO

Overexpression of the chemokine-4 receptor (CXCR4) in brain tumors is associated with high cancer cell invasiveness. Recently, we reported the preclinical evaluation of 99mTc-CXCR4-L (cyclo-D-Tyr-D-[NMe]Orn[EDDA-99mTc-6-hydrazinylnicotinyl]-Arg-NaI-Gly) as a SPECT radioligand capable of specifically detecting the CXCR4 protein. This research aimed to estimate the biokinetic behavior and radiation dosimetry of 99mTc-CXCR4-L in healthy subjects, as well as to correlate the radiotracer uptake by brain tumors in patients, with the histological grade of differentiation and CXCR4 expression evaluated by immunohistochemistry. 99mTc-CXCR4-L was obtained from freeze-dried kits prepared under GMP conditions (radiochemical purities >97%). Whole-body scans from six healthy volunteers were acquired at 0.3, 1, 2, 4, 6, and 24 h after 99mTc-CXCR4-L administration (0.37 GBq). Time-activity curves of different source organs were obtained from the image sequence to adjust the biokinetic models. The OLINDA/EXM code was employed to calculate the equivalent and effective radiation doses. Nine patients with evidence of brain tumor injury (6 primaries and 3 recurrent), determined by MRI, underwent cerebral SPECT at 3 h after administration of 99mTc-CXCR4-L (0.74 GBq). Data were expressed as a T/B (tumor uptake/background) ratio. Biopsy examinations included histological grading and anti-CXCR4 immunohistochemistry. Results showed a fast blood activity clearance (T 1/2 α = 0.81 min and T 1/2 ß = 12.19 min) with renal and hepatobiliary elimination. The average equivalent doses were 6.10E - 04, 1.41E - 04, and 3.13E - 05 mSv/MBq for the intestine, liver, and kidney, respectively. The effective dose was 3.92E - 03 mSv/MBq. SPECT was positive in 7/9 patients diagnosed as grade II oligodendroglioma (two patients), grade IV glioblastoma (two patients), grade IV gliosarcoma (one patient), metastasis, and diffuse astrocytoma with T/B ratios of 1.3, 2.3, 13, 7, 19, 5.5, and 3.9, respectively, all of them with positive immunohistochemistry. A direct relationship between the grade of differentiation and the expression of CXCR4 was found. The two negative SPECT studies showed negative immunohistochemistry with a diagnosis of reactive gliosis. This "proof-of-concept" research warrants further clinical studies to establish the usefulness of 99mTc-CXCR4-L in the diagnosis and prognosis of brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Estudo de Prova de Conceito , Radiometria , Receptores CXCR4/metabolismo , Tecnécio/farmacocinética , Adulto , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Invasividade Neoplásica , Tecnécio/sangue , Tecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único , Imagem Corporal Total
14.
Radiat Environ Biophys ; 59(2): 257-263, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32240361

RESUMO

The aim of this work is to determine the effect of chronic immobilization stress on kinetics and dosimetry of 67Ga in a mouse model. A control group (CG) and a stress group (SG), each with 15 mice, were included in the study, and the latter group was subjected to a chronic immobilization stress model 2 h daily for 14 consecutive days. At day 13, 67Ga-citrate was administered intraperitoneally (11.24 ± 0.44 MBq) to each mouse. Then, sets of three mice were obtained sequentially at 24, 36, 48, 60 and 72 h, in which the radionuclide activity was measured with an activity counter. The 67Ga biokinetic data showed a fast blood clearance in the SG, with a mean residence time of 0.06 h. The calculated mean radiation absorbed doses were: liver (2.45 × 10-03 Gy), heart (3.17 × 10-04 Gy) and kidney (1.88 × 10-04 Gy) in the SG. The results show that stress reduced weight gain by approximately 13% and also increased adrenal gland weight by 26%. On the other hand, chronic stress accelerates 67Ga clearance after 24 h compared to normal conditions. It is concluded that murine organisms under chronic immobilization stress have higher gallium-67 clearance rates, decreasing the cumulated activity and absorbed dose in all organs.


Assuntos
Citratos/administração & dosagem , Radioisótopos de Gálio , Gálio/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Restrição Física , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Glândulas Suprarrenais/patologia , Animais , Citratos/farmacocinética , Modelos Animais de Doenças , Gálio/farmacocinética , Masculino , Camundongos , Doses de Radiação , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Aumento de Peso
15.
Curr Med Chem ; 27(41): 7032-7047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31870259

RESUMO

Protein interactions are the basis for the biological functioning of human beings. However, many of these interactions are also responsible for diseases, including cancer. Synthetic inhibitors of protein interactions based on small molecules are widely investigated in medicinal chemistry. The development of radiolabeled protein-inhibitor peptides for molecular imaging and targeted therapy with quickstep towards clinical translation is an interesting and active research field in the radiopharmaceutical sciences. In this article, recent achievements concerning the design, translational research and theranostic applications of structurally-modified small radiopeptides, such as prostate-specific membrane antigen (PSMA) inhibitors, fibroblast activation protein (FAP) inhibitors and antagonists of chemokine-4 receptor ligands (CXCR-4-L), with high affinity for cancer-associated target proteins, are reviewed and discussed.


Assuntos
Imagem Molecular , Neoplasias , Peptídeos/química , Compostos Radiofarmacêuticos/química , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Medicina de Precisão
16.
Appl Radiat Isot ; 146: 24-28, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30743222

RESUMO

The therapeutic potential of 177Lu-iPSMA on hypoxic cancer cells has not been yet demonstrated. The aim of this work was to evaluate the radiation dose effect of 177Lu-iPSMA on viability and DNA damage in U87MG human glioma cells subjected to hypoxia-mimetic conditions. U87MG cells treated with 177Lu-iPSMA were incubated with CoCl2 in order to induce hypoxia-mimetic conditions. The cytotoxic and genotoxic effect was evaluated with an in vitro viability test and a neutral comet assay. 177Lu-iPSMA decreased the cell viability and induced DNA double strand breaks in U87MG human glioma cells under hypoxia-mimetic conditions. 177Lu-iPSMA produced the maximum effect at 48 h, suggesting that this radiopharmaceutical could be used as a strategy for the treatment of human glioma hypoxic cells.


Assuntos
Glioma/radioterapia , Glutamato Carboxipeptidase II/antagonistas & inibidores , Lutécio/uso terapêutico , Radioisótopos/uso terapêutico , Antígenos de Superfície , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Glioma/metabolismo , Glioma/patologia , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Hipóxia Tumoral/efeitos da radiação
17.
Appl Radiat Isot ; 146: 66-71, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30753987

RESUMO

This research aimed to assess the radiation absorbed dose produced by 177Lu-iPSMA (177Lu-prostate specific membrane antigen inhibitor), 225Ac-iPSMA and 223RaCl2 to prostate cancer cell nuclei in a simplified model of bone by using an experimental in-vitro prostate cancer LNCaP cell biokinetic study and Monte Carlo simulation with the MCNPX code. Results showed that 225Ac-iPSMA releases a nine hundred-fold radiation dose greater than 177Lu-iPSMA and 14 times more than 223RaCl2 per unit of activity retained in bone. 225Ac-iPSMA could be the best option for treatment of bone metastases in prostate cancer.


Assuntos
Actínio/uso terapêutico , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Lutécio/uso terapêutico , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/secundário , Radioisótopos/uso terapêutico , Rádio (Elemento)/uso terapêutico , Actínio/farmacocinética , Antígenos de Superfície , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Simulação por Computador , Glutamato Carboxipeptidase II/antagonistas & inibidores , Humanos , Lutécio/farmacocinética , Masculino , Modelos Biológicos , Método de Monte Carlo , Neoplasias da Próstata/metabolismo , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Dosagem Radioterapêutica , Rádio (Elemento)/farmacocinética , Microambiente Tumoral/efeitos da radiação
18.
Contrast Media Mol Imaging ; 2018: 5247153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534027

RESUMO

SPECT/CT images in patients have demonstrated the ability of [99mTc]Tc-EDDA/HYNIC-Lys(Nal)-Urea-Glu ([99mTc]Tc-iPSMA) to detect tumors and metastases of prostate cancer. Considering that theranostics combines the potential of therapeutic and diagnostic radionuclides in the same molecular probe, the aim of this research was to estimate the biokinetics and dosimetry of 177Lu-DOTA-HYNIC-Lys(Nal)-Urea-Glu (177Lu-iPSMA) in healthy subjects and analyze the response in patients receiving 177Lu-iPSMA therapeutic doses. 177Lu-iPSMA was obtained from lyophilized formulations with radiochemical purities >98%. Whole-body images from five healthy subjects were acquired at 20 min, 6, 24, 48, and 120 h after 177Lu-iPSMA administration (185 MBq). The image sequence was used to extrapolate the 177Lu-iPSMA time-activity curves of each organ to adjust the biokinetic model and calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation doses. Ten patients (median age: 68 y; range 58-86 y) received from 1 to 4 cycles of 177Lu-iPSMA (3.7 or 7.4 GBq) every 8-10 weeks. Response was evaluated using the 68Ga-PSMA-ligand-PET/CT or 99mTc-iPSMA-SPECT/CT diagnostic images and serum PSA levels before and after 177Lu-iPSMA treatment. The blood activity showed a half-life value of 1.1 h for the fast component (T 1/2 α = ln2/0.614), 9.2 h for the first slow component (T 1/2 ß = ln2/0.075), and 79.6 h for the second slow component (T 1/2 γ = ln2/0.008). The average absorbed doses were 0.23, 0.28, 0.88, and 1.17 Gy/GBq for the spleen, liver, kidney, and salivary glands. A total of 18 cycles were performed in 10 patients. A PSA decrease and some reduction of the radiotracer uptake (SUV) in tumor lesions occurred in 60% and 70% of the patients, respectively. 177Lu-iPSMA obtained from kit formulations showed high tumor uptake with good response rates in patients. The results obtained in this study warrant further clinical studies to establish the optimal number of treatment cycles and for evaluating the effect of this therapeutic agent on survival of patients.


Assuntos
Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Idoso , Idoso de 80 Anos ou mais , Antígenos de Superfície/imunologia , Glutamato Carboxipeptidase II/imunologia , Humanos , Cinética , Lutécio , Masculino , Pessoa de Meia-Idade , Radioisótopos , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/síntese química , Nanomedicina Teranóstica , Fatores de Tempo , Distribuição Tecidual
19.
Appl Radiat Isot ; 141: 156-161, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29452949

RESUMO

Glioblastoma contains self-renewing, tumorigenic cancer stem-like cells that contribute to tumor initiation and therapeutic resistance. The aim of this research was to estimate and compare the effectiveness ratio (α/ß) of stem-like cells and differentiated glioma cells derived from the U87MG glioblastoma cell line. Cell survival experiments were obtained in a dose range of 0-20 Gy (13.52 ± 0.09 Gy/h) as a hyperfractionationated accelerated radiotherapy scheme. Biochemical characterization of the post-irradiated cells was performed by flow cytometry analysis and the percentage of stem-like cells that resisted irradiation was determined by the CD133 expression. Results showed that U87MG stem-like cells are highly proliferative and more radioresistant than the U87MG adherent group (with a lesser stem-like character), this in association with the calculated α/ß ratio of 17 and 14.1, respectively.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Antígeno AC133/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação , Esferoides Celulares/patologia , Esferoides Celulares/efeitos da radiação , Microambiente Tumoral/efeitos da radiação
20.
Mol Imaging ; 16: 1536012117704768, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28654384

RESUMO

The integration of fluorescence and plasmonic properties into one molecule is of importance in developing multifunctional imaging and therapy nanoprobes. The aim of this research was to evaluate the fluorescent properties and the plasmonic-photothermal, therapeutic, and radiotherapeutic potential of 177Lu-dendrimer conjugated to folate and bombesin with gold nanoparticles in the dendritic cavity (177Lu-DenAuNP-folate-bombesin) when it is internalized in T47D breast cancer cells. The intense near-Infrared (NIR) fluorescence emitted at 825 nm from the conjugate inside cells corroborated the usefulness of DenAuNP-folate-bombesin for optical imaging. After laser irradiation, the presence of the nanosystem in cells caused a significant increase in the temperature of the medium (46.8°C, compared to 39.1°C without DenAuNP-folate-bombesin, P < 0.05), resulting in a significant decrease in cell viability (down to 16.51% ± 1.52%) due to the 177Lu-DenAuNP-folate-bombesin plasmonic properties. After treatment with 177Lu-DenAuNP-folate-bombesin, the T47D cell viability decreased 90% because of the radiation-absorbed dose (63.16 ± 4.20 Gy) delivered inside the cells. The 177Lu-DenAuNP-folate-bombesin nanoprobe internalized in cancer cells exhibited properties suitable for optical imaging, plasmonic-photothermal therapy, and targeted radiotherapy.


Assuntos
Dendrímeros/química , Ácido Fólico/química , Ouro/química , Lutécio/química , Nanopartículas Metálicas/química , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Transmissão , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...