Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(27): 15976-15982, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35493655

RESUMO

The physical properties of polymers can be significantly altered by blending them with inorganic components. This can be done during the polymerization process, but also by post-processing of already shaped materials, for example through coating by atomic layer deposition (ALD) or hybridizing through vapor phase infiltration (VPI), both of which are beneficial in their own way. Here, a new processing strategy is presented, which allows distinct control of the coating and infiltration. The process is a hybrid VPI and ALD process, allowing separate control of infiltrated and coated components. This new simultaneous vapor phase coating and infiltration process (SCIP) enhances the degrees of freedom for optimizing the properties of polymers, as shown on the example of Kevlar 29 fibers. The SCIP treated fibers show an increase of 17% of their modulus of toughness (MOT) in comparison to native Kevlar, through the nanoscale coating with alumina. At the same time their intrinsic sensitivity to 24 hours UV-irradiation was completely suppressed through another infiltrated material, zinc oxide, which absorbs the UV irradiation in the subsurface area of the fibers.

2.
ACS Appl Mater Interfaces ; 9(44): 39078-39085, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29039644

RESUMO

In the present work, perfluoroalkylated laponite nanoparticles with a high degree of functionalization (60 wt %) have been prepared and a methodology to prepare transparent, antistatic, and omniphobic laponite-based films with holistic self-cleaning properties against liquids, solids and liquid-solid mixtures has been developed. The intrinsic electrical and ionic conductivities observed in unmodified laponite coatings are combined with perfluoroalkyl-modified laponite clays. As a result, films with improved self-cleaning functionality based on dust-repellency and omniphobic liquid-repellence (sheet resistance in the range of 107 Ω/□ and contact angles of 106° (H2O) and 93° (oil)) were obtained. These unique films, being capable to repel dust and liquids, were applied to a variety of substrates (i.e., glass and plastics) and tested against solids and liquids of different nature with excellent performance. Bending tests of these holistic self-cleaning films deposited over flexible substrates showed better mechanical performance than unmodified laponite films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...