Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791484

RESUMO

Lipid droplet (LD) accumulation in hepatocytes is one of the major symptoms associated with fatty liver disease. Mitochondria play a key role in catabolizing fatty acids for energy production through ß-oxidation. The interplay between mitochondria and LD assumes a crucial role in lipid metabolism, while it is obscure how mitochondrial morphology affects systemic lipid metabolism in the liver. We previously reported that cilnidipine, an already existing anti-hypertensive drug, can prevent pathological mitochondrial fission by inhibiting protein-protein interaction between dynamin-related protein 1 (Drp1) and filamin, an actin-binding protein. Here, we found that cilnidipine and its new dihydropyridine (DHP) derivative, 1,4-DHP, which lacks Ca2+ channel-blocking action of cilnidipine, prevent the palmitic acid-induced Drp1-filamin interaction, LD accumulation and cytotoxicity of human hepatic HepG2 cells. Cilnidipine and 1,4-DHP also suppressed the LD accumulation accompanied by reducing mitochondrial contact with LD in obese model and high-fat diet-fed mouse livers. These results propose that targeting the Drp1-filamin interaction become a new strategy for the prevention or treatment of fatty liver disease.


Assuntos
Di-Hidropiridinas , Dinaminas , Gotículas Lipídicas , Fígado , Animais , Dinaminas/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Camundongos , Células Hep G2 , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Di-Hidropiridinas/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos
2.
J Pharmacol Sci ; 155(3): 94-100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797538

RESUMO

Interleukin (IL-19) belongs to the IL-10 family of cytokines and plays diverse roles in inflammation, cell development, viral responses, and lipid metabolism. Acute lung injury (ALI) is a severe respiratory condition associated with various diseases, including severe pneumonia, sepsis, and trauma, lacking established treatments. However, the role of IL-19 in acute inflammation of the lungs is unknown. We reported the impact of IL-19 functional deficiency in mice crossed with an ALI model using HCl. Lungs damages, neutrophil infiltration, and pulmonary edema induced by HCl were significantly worse in IL-19 knockout (KO) mice than in wild-type (WT) mice. mRNA expression levels of C-X-C motif chemokine ligand 1 (CXCL1) and IL-6 in the lungs were significantly higher in IL-19 KO mice than in WT mice. Little apoptosis was detected in lung injury in WT mice, whereas apoptosis was observed in exacerbated area of lung injury in IL-19 KO mice. These results are the first to show that IL-19 is involved in acute inflammation of the lungs, suggesting a novel molecular mechanism in acute respiratory failures. If it can be shown that neutrophils have IL-19 receptors and that IL-19 acts directly on them, it would be a novel drug target.


Assuntos
Lesão Pulmonar Aguda , Ácido Clorídrico , Interleucinas , Camundongos Knockout , Animais , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Interleucinas/genética , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-6/metabolismo , Interleucina-6/genética , Modelos Animais de Doenças , Infiltração de Neutrófilos , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Masculino , Pulmão/patologia , Pulmão/metabolismo , Apoptose/genética , Apoptose/efeitos dos fármacos , Camundongos , Neutrófilos , Edema Pulmonar/etiologia , Expressão Gênica
3.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397074

RESUMO

We recently reported that transient receptor potential canonical (TRPC) 6 channel activity contributes to intracellular Zn2+ homeostasis in the heart. Zn2+ has also been implicated in the regulation of intestinal redox and microbial homeostasis. This study aims to investigate the role of TRPC6-mediated Zn2+ influx in the stress resistance of the intestine. The expression profile of TRPC1-C7 mRNAs in the actively inflamed mucosa from inflammatory bowel disease (IBD) patients was analyzed using the GEO database. Systemic TRPC3 knockout (KO) and TRPC6 KO mice were treated with dextran sulfate sodium (DSS) to induce colitis. The Zn2+ concentration and the mRNA expression levels of oxidative/inflammatory markers in colon tissues were quantitatively analyzed, and gut microbiota profiles were compared. TRPC6 mRNA expression level was increased in IBD patients and DSS-treated mouse colon tissues. DSS-treated TRPC6 KO mice, but not TRPC3 KO mice, showed severe weight loss and increased disease activity index compared with DSS-treated WT mice. The mRNA abundances of antioxidant proteins were basically increased in the TRPC6 KO colon, with changes in gut microbiota profiles. Treatment with TRPC6 activator prevented the DSS-induced colitis progression accompanied by increasing Zn2+ concentration. We suggest that TRPC6-mediated Zn2+ influx activity plays a key role in stress resistance against IBD, providing a new strategy for treating colitis.


Assuntos
Doenças Inflamatórias Intestinais , Canal de Cátion TRPC6 , Animais , Humanos , Camundongos , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA