Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Med ; 30(4): 990-1000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605166

RESUMO

Children with rare, relapsed or refractory cancers often face limited treatment options, and few predictive biomarkers are available that can enable personalized treatment recommendations. The implementation of functional precision medicine (FPM), which combines genomic profiling with drug sensitivity testing (DST) of patient-derived tumor cells, has potential to identify treatment options when standard-of-care is exhausted. The goal of this prospective observational study was to generate FPM data for pediatric patients with relapsed or refractory cancer. The primary objective was to determine the feasibility of returning FPM-based treatment recommendations in real time to the FPM tumor board (FPMTB) within a clinically actionable timeframe (<4 weeks). The secondary objective was to assess clinical outcomes from patients enrolled in the study. Twenty-five patients with relapsed or refractory solid and hematological cancers were enrolled; 21 patients underwent DST and 20 also completed genomic profiling. Median turnaround times for DST and genomics were within 10 days and 27 days, respectively. Treatment recommendations were made for 19 patients (76%), of whom 14 received therapeutic interventions. Six patients received subsequent FPM-guided treatments. Among these patients, five (83%) experienced a greater than 1.3-fold improvement in progression-free survival associated with their FPM-guided therapy relative to their previous therapy, and demonstrated a significant increase in progression-free survival and objective response rate compared to those of eight non-guided patients. The findings from our proof-of-principle study illustrate the potential for FPM to positively impact clinical care for pediatric and adolescent patients with relapsed or refractory cancers and warrant further validation in large prospective studies. ClinicalTrials.gov registration: NCT03860376 .


Assuntos
Neoplasias Hematológicas , Neoplasias , Adolescente , Criança , Humanos , Medicina de Precisão , Estudos Prospectivos , Estudos de Viabilidade , Neoplasias/genética , Neoplasias/terapia
2.
Clin Cancer Res ; 28(9): 1948-1965, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35135840

RESUMO

PURPOSE: Although chemotherapies kill most cancer cells, stem cell-enriched survivors seed metastasis, particularly in triple-negative breast cancers (TNBC). TNBCs arise from and are enriched for tumor stem cells. Here, we tested if inhibition of DOT1L, an epigenetic regulator of normal tissue stem/progenitor populations, would target TNBC stem cells. EXPERIMENTAL DESIGN: Effects of DOT1L inhibition by EPZ-5676 on stem cell properties were tested in three TNBC lines and four patient-derived xenograft (PDX) models and in isolated cancer stem cell (CSC)-enriched ALDH1+ and ALDH1- populations. RNA sequencing compared DOT1L regulated pathways in ALDH1+ and ALDH1- cells. To test if EPZ-5676 decreases CSC in vivo, limiting dilution assays of EPZ-5676/vehicle pretreated ALDH1+ and ALDH1- cells were performed. Tumor latency, growth, and metastasis were evaluated. Antitumor activity was also tested in TNBC PDX and PDX-derived organoids. RESULTS: ALDH1+ TNBC cells exhibit higher DOT1L and H3K79me2 than ALDH1-. DOT1L maintains MYC expression and self-renewal in ALDH1+ cells. Global profiling revealed that DOT1L governs oxidative phosphorylation, cMyc targets, DNA damage response, and WNT activation in ALDH1+ but not in ALDH1- cells. EPZ-5676 reduced tumorspheres and ALDH1+ cells in vitro and decreased tumor-initiating stem cells and metastasis in xenografts generated from ALDH1+ but not ALDH1- populations in vivo. EPZ-5676 significantly reduced growth in vivo of one of two TNBC PDX tested and decreased clonogenic 3D growth of two other PDX-derived organoid cultures. CONCLUSIONS: DOT1L emerges as a key CSC regulator in TNBC. Present data support further clinical investigation of DOT1L inhibitors to target stem cell-enriched TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Família Aldeído Desidrogenase 1 , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Pharmacol Ther ; 234: 108048, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34848203

RESUMO

Translocator Protein 18 kDa (TSPO), previously named Peripheral Benzodiazepine Receptor, is a well-validated and widely used biomarker of neuroinflammation to assess diverse central nervous system (CNS) pathologies in preclinical and clinical studies. Many studies have shown that in animal models of human neurological and neurodegenerative disease and in the human condition, TSPO levels increase in the brain neuropil, and this increase is driven by infiltration of peripheral inflammatory cells and activation of glial cells. Therefore, a clear understanding of the dynamics of the cellular sources of the TSPO response is critically important in the interpretation of Positron Emission Tomography (PET) studies and for understanding the pathophysiology of CNS diseases. Within the normal brain compartment, there are tissues and cells such as the choroid plexus, ependymal cells of the lining of the ventricles, and vascular endothelial cells that also express TSPO at even higher levels than in glial cells. However, there is a paucity of knowledge if these cell types respond and increase TSPO in the diseased brain. These cells do provide a background signal that needs to be accounted for in TSPO-PET imaging studies. More recently, there are reports that TSPO may be expressed in neurons of the adult brain and TSPO expression may be increased by neuronal activity. Therefore, it is essential to study this topic with a great deal of detail, methodological rigor, and rule out alternative interpretations and imaging artifacts. High levels of TSPO are present in the outer mitochondrial membrane. Recent studies have provided evidence of its localization in other cellular compartments including the plasma membrane and perinuclear regions which may define functions that are different from that in mitochondria. A greater understanding of the TSPO subcellular localization in glial cells and infiltrating peripheral immune cells and associated function(s) may provide an additional layer of information to the understanding of TSPO neurobiology. This review is an effort to outline recent advances in understanding the cellular sources and subcellular localization of TSPO in brain cells and to examine remaining questions that require rigorous investigation.


Assuntos
Doenças Neurodegenerativas , Receptores de GABA , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
5.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572751

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor in adults, with few available therapies and a five-year survival rate of 7.2%. Hence, strategies for improving GBM prognosis are urgently needed. The translocator protein 18kDa (TSPO) plays crucial roles in essential mitochondria-based physiological processes and is a validated biomarker of neuroinflammation, which is implicated in GBM progression. The TSPO gene has a germline single nucleotide polymorphism, rs6971, which is the most common SNP in the Caucasian population. High TSPO gene expression is associated with reduced survival in GBM patients; however, the relation between the most frequent TSPO genetic variant and GBM pathogenesis is not known. The present study retrospectively analyzed the correlation of the TSPO polymorphic variant rs6971 with overall and progression-free survival in GBM patients using three independent cohorts. TSPO rs6971 polymorphism was significantly associated with shorter overall survival and progression-free survival in male GBM patients but not in females in one large cohort of 441 patients. We observed similar trends in two other independent cohorts. These observations suggest that the TSPO rs6971 polymorphism could be a significant predictor of poor prognosis in GBM, with a potential for use as a prognosis biomarker in GBM patients. These results reveal for the first time a biological sex-specific relation between rs6971 TSPO polymorphism and GBM.

6.
J Leukoc Biol ; 110(1): 123-140, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33205494

RESUMO

Translocator protein 18 kDa (TSPO) is a well-known outer mitochondrial membrane protein and it is widely used as a biomarker of neuroinflammation and brain injury. Although it is thought that TSPO plays key roles in a multitude of host cell functions, including steroid biosynthesis, apoptosis, generation of reactive oxygen species, and proliferation, some of these functions have recently been questioned. Here, we report the unexpected finding that circulating immune cells differentially express basal levels of TSPO on their cell surface, with a high percentage of monocytes and neutrophils expressing cell surface TSPO. In vitro stimulation of monocytes with LPS significantly increases the frequency of cells with surface TSPO expression in the absence of altered gene expression. Importantly, the LPS increase in TSPO cell surface expression in monocytes appears to be selective for LPS because two other distinct monocyte activators failed to increase the frequency of cells with surface TSPO. Finally, when we quantified immune cell TSPO surface expression in antiretroviral therapy-treated HIV+ donors, a chronic inflammatory disease, we found significant increases in the frequency of TSPO surface localization, which could be pharmacologically suppressed with ∆9 -tetrahydrocannabinol. These findings suggest that cell surface TSPO in circulating leukocytes could serve as a peripheral blood-based biomarker of inflammation.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Lipopolissacarídeos/efeitos adversos , Receptores de GABA/metabolismo , Animais , Terapia Antirretroviral de Alta Atividade , Apoptose , Biomarcadores , Suscetibilidade a Doenças , Infecções por HIV/tratamento farmacológico , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA/genética
7.
Mol Neurobiol ; 57(11): 4467-4487, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32743737

RESUMO

In the brain neuropil, translocator protein 18 kDa (TSPO) is a stress response protein that is upregulated in microglia and astrocytes in diverse central nervous system pathologies. TSPO is widely used as a biomarker of neuroinflammation in preclinical and clinical neuroimaging studies. However, there is a paucity of knowledge on the function(s) of TSPO in glial cells. In this study, we explored a putative interaction between TSPO and NADPH oxidase 2 (NOX2) in microglia. We found that TSPO associates with gp91phox and p22phox, the principal subunits of NOX2 in primary murine microglia. The association of TSPO with gp91phox and p22phox was observed using co-immunoprecipitation, confocal immunofluorescence imaging, and proximity ligation assay. We found that besides gp91phox and p22phox, voltage-dependent anion channel (VDAC) also co-immunoprecipitated with TSPO consistent with previous reports. When we compared lipopolysaccharide (LPS) stimulated microglia to vehicle control, we found that a lower amount of gp91phox and p22phox protein co-immunoprecipitated with TSPO suggesting a disruption of the TSPO-NOX2 subunits association. TSPO immuno-gold electron microscopy confirmed that TSPO is present in the outer mitochondrial membrane but it is also found in the endoplasmic reticulum (ER), mitochondria-associated ER membrane (MAM), and in the plasma membrane. TSPO localization at the MAM may represent a subcellular site where TSPO interacts with gp91phox and p22phox since the MAM is a point of communication between outer mitochondria membrane proteins (TSPO) and ER proteins (gp91phox and p22phox) where they mature and form the cytochrome b558 (Cytb558) heterodimer. We also found that an acute burst of reactive oxygen species (ROS) increased TSPO levels on the surface of microglia and this effect was abrogated by a ROS scavenger. These results suggest that ROS production may alter the subcellular distribution of TSPO. Collectively, our findings suggest that in microglia, TSPO is associated with the major NOX2 subunits gp91phox and p22phox. We hypothesize that this interaction may regulate Cytb558 formation and modulate NOX2 levels, ROS production, and redox homeostasis in microglia.


Assuntos
Microglia/metabolismo , NADPH Oxidases/metabolismo , Receptores de GABA/metabolismo , Animais , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Heme/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/ultraestrutura , Mitocôndrias/metabolismo , Modelos Biológicos , Porfirinas/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA/química , Canais de Ânion Dependentes de Voltagem/metabolismo
8.
Anticancer Res ; 39(8): 4023-4030, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31366484

RESUMO

BACKGROUND: Treatment options for patients with platinum-resistant ovarian cancer are generally palliative in nature and rarely have realistic potential to be curative. Because many patients with recurrent ovarian cancer receive aggressive chemotherapy for prolonged periods, sometimes continuously, therapy-related toxicities are a major factor in treatment decisions. The use of ex vivo drug sensitivity screens has the potential to improve the treatment of patients with platinum-resistant ovarian cancer by providing personalized treatment plans and thus reducing toxicity from unproductive therapy attempts. MATERIALS AND METHODS: We evaluated the treatment responses of a set of six early-passage patient-derived ovarian cancer cell lines towards a set of 30 Food and Drug Administration-approved chemotherapy drugs using drug-sensitivity testing. RESULTS: We observed a wide range of treatment responses of the cell lines. While most compounds displayed vastly different treatment responses between cell lines, we found that some compounds such as docetaxel and cephalomannine reduced cell survival of all cell lines. CONCLUSION: We propose that ex vivo drug-sensitivity screening holds the potential to greatly improve patient outcomes, especially in a population where multiple continuous treatments are not an option due to advanced disease, rapid disease progression, age or poor overall health. This approach may also be useful to identify potential novel therapeutics for patients with ovarian cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Platina/farmacologia , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Platina/efeitos adversos
9.
Clin Cancer Res ; 24(19): 4874-4886, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959144

RESUMO

Purpose: Rational targeted therapies are needed for treatment of ovarian cancers. Signaling kinases Src and MAPK are activated in high-grade serous ovarian cancer (HGSOC). Here, we tested the frequency of activation of both kinases in HGSOC and the therapeutic potential of dual kinase inhibition.Experimental Design: MEK and Src activation was assayed in primary HGSOC from The Cancer Genome Atlas (TGGA). Effects of dual kinase inhibition were assayed on cell-cycle, apoptosis, gene, and proteomic analysis; cancer stem cells; and xenografts.Results: Both Src and MAPK are coactivated in 31% of HGSOC, and this associates with worse overall survival on multivariate analysis. Frequent dual kinase activation in HGSOC led us to assay the efficacy of combined Src and MEK inhibition. Treatment of established lines and primary ovarian cancer cultures with Src and MEK inhibitors saracatinib and selumetinib, respectively, showed target kinase inhibition and synergistic induction of apoptosis and cell-cycle arrest in vitro, and tumor inhibition in xenografts. Gene expression and proteomic analysis confirmed cell-cycle inhibition and autophagy. Dual therapy also potently inhibited tumor-initiating cells. Src and MAPK were both activated in tumor-initiating populations. Combination treatment followed by drug washout decreased sphere formation and ALDH1+ cells. In vivo, tumors dissociated after dual therapy showed a marked decrease in ALDH1 staining, sphere formation, and loss of tumor-initiating cells upon serial xenografting.Conclusions: Selumetinib added to saracatinib overcomes EGFR/HER2/ERBB2-mediated bypass activation of MEK/MAPK observed with saracatinib alone and targets tumor-initiating ovarian cancer populations, supporting further evaluation of combined Src-MEK inhibition in clinical trials. Clin Cancer Res; 24(19); 4874-86. ©2018 AACR.


Assuntos
MAP Quinase Quinase 1/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Proteômica , Quinases da Família src/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzodioxóis/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/genética , Feminino , Humanos , MAP Quinase Quinase 1/genética , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/genética
10.
Leuk Res ; 64: 34-41, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175379

RESUMO

A precision medicine approach is appealing for use in AML due to ease of access to tumor samples and the significant variability in the patients' response to treatment. Attempts to establish a precision medicine platform for AML, however, have been unsuccessful, at least in part due to the use of small compound panels and having relatively slow turn over rates, which restricts the scope of treatment and delays its onset. For this pilot study, we evaluated a cohort of 12 patients with refractory AML using an ex vivo drug sensitivity testing (DST) platform. Purified AML blasts were screened with a panel of 215 FDA-approved compounds and treatment response was evaluated after 72h of exposure. Drug sensitivity scoring was reported to the treating physician, and patients were then treated with either DST- or non-DST guided therapy. We observed survival benefit of DST-guided therapy as compared to the survival of patients treated according to physician recommendation. Three out of four DST-treated patients displayed treatment response, while all of the non-DST-guided patients progressed during treatment. DST rapidly and effectively provides personalized treatment recommendations for patients with refractory AML.


Assuntos
Antineoplásicos/uso terapêutico , Tomada de Decisão Clínica/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Medicina de Precisão/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Adulto Jovem
11.
Mol Cancer Res ; 15(2): 152-164, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28108626

RESUMO

Resistance to hormonal therapies is a major clinical problem in the treatment of estrogen receptor α-positive (ERα+) breast cancers. Epigenetic marks, namely DNA methylation of cytosine at specific CpG sites (5mCpG), are frequently associated with ERα+ status in human breast cancers. Therefore, ERα may regulate gene expression in part via DNA methylation. This hypothesis was evaluated using a panel of breast cancer cell line models of antiestrogen resistance. Microarray gene expression profiling was used to identify genes normally silenced in ERα+ cells but derepressed upon exposure to the demethylating agent decitabine, derepressed upon long-term loss of ERα expression, and resuppressed by gain of ERα activity/expression. ERα-dependent DNA methylation targets (n = 39) were enriched for ERα-binding sites, basal-up/luminal-down markers, cancer stem cell, epithelial-mesenchymal transition, and inflammatory and tumor suppressor genes. Kaplan-Meier survival curve and Cox proportional hazards regression analyses indicated that these targets predicted poor distant metastasis-free survival among a large cohort of breast cancer patients. The basal breast cancer subtype markers LCN2 and IFI27 showed the greatest inverse relationship with ERα expression/activity and contain ERα-binding sites. Thus, genes that are methylated in an ERα-dependent manner may serve as predictive biomarkers in breast cancer. IMPLICATIONS: ERα directs DNA methylation-mediated silencing of specific genes that have biomarker potential in breast cancer subtypes. Mol Cancer Res; 15(2); 152-64. ©2016 AACR.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Transição Epitelial-Mesenquimal/genética , Receptor alfa de Estrogênio/genética , Células-Tronco Neoplásicas/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Células MCF-7
12.
Cancer Res ; 76(2): 491-504, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744520

RESUMO

Consequences of the obesity epidemic on cancer morbidity and mortality are not fully appreciated. Obesity is a risk factor for many cancers, but the mechanisms by which it contributes to cancer development and patient outcome have yet to be fully elucidated. Here, we examined the effects of coculturing human-derived adipocytes with established and primary breast cancer cells on tumorigenic potential. We found that the interaction between adipocytes and cancer cells increased the secretion of proinflammatory cytokines. Prolonged culture of cancer cells with adipocytes or cytokines increased the proportion of mammosphere-forming cells and of cells expressing stem-like markers in vitro. Furthermore, contact with immature adipocytes increased the abundance of cancer cells with tumor-forming and metastatic potential in vivo. Mechanistic investigations demonstrated that cancer cells cultured with immature adipocytes or cytokines activated Src, thus promoting Sox2, c-Myc, and Nanog upregulation. Moreover, Sox2-dependent induction of miR-302b further stimulated cMYC and SOX2 expression and potentiated the cytokine-induced cancer stem cell-like properties. Finally, we found that Src inhibitors decreased cytokine production after coculture, indicating that Src is not only activated by adipocyte or cytokine exposures, but is also required to sustain cytokine induction. These data support a model in which cancer cell invasion into local fat would establish feed-forward loops to activate Src, maintain proinflammatory cytokine production, and increase tumor-initiating cell abundance and metastatic progression. Collectively, our findings reveal new insights underlying increased breast cancer mortality in obese individuals and provide a novel preclinical rationale to test the efficacy of Src inhibitors for breast cancer treatment.


Assuntos
Adipócitos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Citocinas/metabolismo , Obesidade/complicações , RNA Mensageiro/metabolismo , Quinases da Família src/metabolismo , Adipócitos/citologia , Animais , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Camundongos , RNA Mensageiro/genética , Fatores de Transcrição SOXB1 , Transdução de Sinais , Transfecção , Quinases da Família src/genética
13.
Cell ; 159(3): 499-513, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417103

RESUMO

Stromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely noncoding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent antiviral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine antiviral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy-resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of antiviral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate crosstalk with BrCa cells by utilizing exosomes to instigate antiviral signaling. This expands BrCa subpopulations adept at resisting therapy and reinitiating tumor growth.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Exossomos/metabolismo , Comunicação Parácrina , Células Estromais/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Interferons/metabolismo , Camundongos Nus , Tolerância a Radiação , Receptores Notch/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Proteínas rab de Ligação ao GTP/metabolismo
14.
Breast Cancer Res Treat ; 144(3): 503-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24567196

RESUMO

Our goal was to establish primary cultures from dissociation of breast tumors in order to provide cellular models that may better recapitulate breast cancer pathogenesis and the metastatic process. Here, we report the characterization of six cellular models derived from the dissociation of primary breast tumor specimens, referred to as "dissociated tumor (DT) cells." In vitro, DT cells were characterized by proliferation assays, colony formation assays, protein, and gene expression profiling, including PAM50 predictor analysis. In vivo, tumorigenic and metastatic potential of DT cultures was assessed in NOD/SCID and NSG mice. These cellular models differ from recently developed patient-derived xenograft models in that they can be used for both in vitro and in vivo studies. PAM50 predictor analysis showed DT cultures similar to their paired primary tumor and as belonging to the basal and Her2-enriched subtypes. In vivo, three DT cultures are tumorigenic in NOD/SCID and NSG mice, and one of these is metastatic to lymph nodes and lung after orthotopic inoculation into the mammary fat pad, without excision of the primary tumor. Three DT cultures comprised of cancer-associated fibroblasts (CAFs) were isolated from luminal A, Her2-enriched, and basal primary tumors. Among the DT cells are those that are tumorigenic and metastatic in immunosuppressed mice, offering novel cellular models of ER-negative breast cancer subtypes. A group of CAFs provide tumor subtype-specific components of the tumor microenvironment (TME). Altogether, these DT cultures provide closer-to-primary cellular models for the study of breast cancer pathogenesis, metastasis, and TME.


Assuntos
Neoplasias da Mama/patologia , Cultura Primária de Células , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Metástase Neoplásica , Cultura Primária de Células/métodos , Carga Tumoral , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
15.
Med J Aust ; 199(8): 539-42, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24138379

RESUMO

The Western Australian Audit of Surgical Mortality (WAASM) is an external, peer-reviewed audit of all deaths that occur in hospital of patients under the care of a surgeon. We conducted a retrospective analysis of prospective audit data collected from 1 January 2002 to 31 December 2011. The annual number of deaths peaked in 2006, then fell 22% by 2011. After correcting for population growth, the overall reduction from 2002 to 2011 was 30% (regression analysis, P = 0.002). Some changes in practice, such as with pancreatic surgery, can be directly attributed to WAASM. There is strong evidence to suggest that WAASM improved other aspects of care, such as thromboembolic prophylaxis, consultant supervision and fluid management. A shift of high-risk patients to teaching hospitals, where there is a greater ability to "rescue" patients after complications, may have been an important factor in improved outcomes. This external, peer-reviewed mortality audit has changed surgical practice and reduced deaths. The same process should be applied to other sentinel events, and the lessons learned can also be extended to non-surgical specialties.


Assuntos
Causas de Morte/tendências , Mortalidade Hospitalar/tendências , Auditoria Médica/estatística & dados numéricos , Procedimentos Cirúrgicos Operatórios/mortalidade , Anticoagulantes/uso terapêutico , Estudos Transversais , Hidratação/tendências , Fidelidade a Diretrizes , Inquéritos Epidemiológicos , Humanos , Complicações Pós-Operatórias/mortalidade , Complicações Pós-Operatórias/prevenção & controle , Reoperação , Procedimentos Cirúrgicos Operatórios/tendências , Trombose Venosa/mortalidade , Trombose Venosa/prevenção & controle , Austrália Ocidental
16.
EMBO Mol Med ; 5(10): 1502-22, 2013 10.
Artigo em Inglês | MEDLINE | ID: mdl-23982961

RESUMO

Increasing evidence suggests that stem-like cells mediate cancer therapy resistance and metastasis. Breast tumour-initiating stem cells (T-ISC) are known to be enriched in CD44(+) CD24(neg/low) cells. Here, we identify two T-ISC subsets within this population in triple negative breast cancer (TNBC) lines and dissociated primary breast cancer cultures: CD44(+) CD24(low+) subpopulation generates CD44(+) CD24(neg) progeny with reduced sphere formation and tumourigenicity. CD44(+) CD24(low+) populations contain subsets of ALDH1(+) and ESA(+) cells, yield more frequent spheres and/or T-ISC in limiting dilution assays, preferentially express metastatic gene signatures and show greater motility, invasion and, in the MDA-MB-231 model, metastatic potential. CD44(+) CD24(low+) but not CD44(+) CD24(neg) express activated Notch1 intracellular domain (N1-ICD) and Notch target genes. We show N1-ICD transactivates SOX2 to increase sphere formation, ALDH1+ and CD44(+) CD24(low+) cells. Gamma secretase inhibitors (GSI) reduced sphere formation and xenograft growth from CD44(+) CD24(low+) cells, but CD44(+) CD24(neg) were resistant. While GSI hold promise for targeting T-ISC, stem cell heterogeneity as observed herein, could limit GSI efficacy. These data suggest a breast T-ISC hierarchy in which distinct pathways drive developmentally related subpopulations with different anti-cancer drug responsiveness.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Família Aldeído Desidrogenase 1 , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Antígeno CD24/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/toxicidade , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Isoenzimas/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Retinal Desidrogenase/metabolismo , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
17.
Clin Cancer Res ; 18(21): 5911-23, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22896656

RESUMO

PURPOSE: More effective, less toxic treatments for recurrent ovarian cancer are needed. Although more than 60% of ovarian cancers express the estrogen receptor (ER), ER-targeted drugs have been disappointing due to drug resistance. In other estrogen-sensitive cancers, estrogen activates Src to phosphorylate p27 promoting its degradation and increasing cell-cycle progression. Because Src is activated in most ovarian cancers, we investigated whether combined Src and ER blockade by saracatinib and fulvestrant would circumvent antiestrogen resistance. EXPERIMENTAL DESIGN: ER and Src were assayed in 338 primary ovarian cancers. Dual ER and Src blockade effects on cell cycle, ER target gene expression, and survival were assayed in ERα+ ovarian cancer lines, a primary human ovarian cancer culture in vitro, and on xenograft growth. RESULTS: Most primary ovarian cancers express ER. Src activity was greater in ovarian cancer lines than normal epithelial lines. Estrogen activated Src, ER-Src binding, and ER translocation from cytoplasm to nucleus. Estrogen-mediated mitogenesis was via ERα, not ERß. While each alone had little effect, combined saracatinib and fulvestrant increased p27 and inhibited cyclin E-Cdk2 and cell-cycle progression. Saracatinib also impaired induction of ER-target genes c-Myc and FOSL1; this was greatest with dual therapy. Combined therapy induced autophagy and more effectively inhibited ovarian cancer xenograft growth than monotherapy. CONCLUSIONS: Saracatinib augments effects of fulvestrant by opposing estrogen-mediated Src activation and target gene expression, increasing cell-cycle arrest, and impairing survival, all of which would oppose antiestrogen resistance in these ER+ ovarian cancer models. These data support further preclinical and clinical evaluation of combined fulvestrant and saracatinib in ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Resistencia a Medicamentos Antineoplásicos , Estradiol/análogos & derivados , Neoplasias Ovarianas/metabolismo , Quinazolinas/farmacologia , Receptores de Estrogênio/metabolismo , Quinases da Família src/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzodioxóis/administração & dosagem , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Estradiol/administração & dosagem , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Fulvestranto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ligação Proteica , Transporte Proteico , Quinazolinas/administração & dosagem , Receptores de Estrogênio/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/genética
18.
Epilepsy Behav ; 20(4): 597-601, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21450530

RESUMO

Because antiepileptic drug therapy is usually given chronically with resulting concerns about long-term neurotoxicity, and because short-term topiramate (TPM) therapy has been reported to be neuroprotective against the effects of acute hypoxia, we investigated the long-term effects of continuous TPM therapy during early stages of development. Four groups of rat pups were studied: two sham manipulated normoxia groups and two acute hypoxia groups (at postnatal day [P] 10 down to 4% O(2)), each injected intraperitoneally daily with either vehicle or TPM (30 mg/kg) from P0 to P21. TPM therapy prevented hypoxia-induced long-term (P81) memory impairment (Morris water maze) as well as aggressivity (handling test). The hypoxia group receiving TPM also showed a trend toward reduced CA1 hippocampal cell loss. The aforementioned TPM therapy had no long-term deleterious effects on memory, hyperactivity, or CA1 cell counts in the TPM normoxia group as compared with normal controls.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Frutose/análogos & derivados , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Fármacos Neuroprotetores/uso terapêutico , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Feminino , Frutose/uso terapêutico , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/patologia , Estudos Longitudinais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Ratos , Ratos Sprague-Dawley , Topiramato
19.
Breast Cancer Res Treat ; 128(1): 69-78, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20669046

RESUMO

Antiestrogen therapies arrest susceptible estrogen receptor (ER)-positive breast cancers by increasing p27. Since Src phosphorylates p27 to promote p27 proteolysis, Src activation observed in up to 40% of ER-positive cancers may contribute to antiestrogen resistance. In this article, we show that treatment with the Src-inhibitor saracatinib (AZD0530) together with ER-blocking drugs increased breast cancer cell cycle arrest via p27. Saracatinib and fulvestrant together more effectively increased p27, reduced Ki67, and impaired MDA-MB-361 xenograft tumor growth in vivo than either of the drugs alone. In contrast, saracatinib monotherapy rapidly gave rise to drug resistance. Since combined ER and Src inhibition delays development of resistance in vivo, these data support further clinical investigation of saracatinib in combination with fulvestrant for women with ER-positive breast cancer. Proteomic analysis revealed striking bypass activation of the mTOR pathway in saracatinib-resistant tumors. mTORC1 activation also arose following long-term culture of ER-positive breast cancer lines in the presence of saracatinib. These data indicate the utility of proteomic analysis of drug-resistant tumors to identify potential means of drug resistance. The use of mTOR kinase inhibitors with saracatinib may subvert drug resistance and prove to be more effective than saracatinib alone.


Assuntos
Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Estradiol/análogos & derivados , Receptor alfa de Estrogênio/antagonistas & inibidores , Quinazolinas/farmacologia , Tamoxifeno/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto , Fase G1/efeitos dos fármacos , Humanos , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Nus , Neoplasias Hormônio-Dependentes , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Adv Exp Med Biol ; 617: 429-35, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18497066

RESUMO

The androgen receptor (AR) is the most widely expressed steroid hormone receptor in human breast cancers and androgens including 5alpha-dihydrotestosterone are potent inhibitors of breast cancer cell proliferation. The extracellular signal-regulated mitogen activated protein kinase (ERK/MAPK) pathway is hyperactivated in a proportion of breast tumors and can interact with steroid hormone receptor signaling by altering receptor phosphorylation, turnover, ligand, and cofactor interactions. To examine the effects of ERK/ MAPK hyperactivity on AR levels, MCF-7 cells were stably transfected with a plasmid encoding a constitutively active MEK1 protein to create MCF-7-DeltaMEK1 cells. Treatment of MCF-7-DeltaMEK1 with androgens caused a transient increase in AR protein levels, similar to that observed in untransfected MCF-7 cells treated with androgens. Androgens also inhibited the proliferation of MCF-7-DeltaMEK1 cells by 50-60% following 8 days of treatment in association with increased accumulation of cells in the G1 phase of the cell cycle. These results indicate that although ERK/MAPK hyperactivation in breast cancer cells is associated with reduced estrogen receptor (ERalpha) levels and antiestrogen resistance, AR levels are maintained and breast cancer cells remain susceptible to the growth inhibitory effects of androgens.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Di-Hidrotestosterona/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Western Blotting , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Mutação/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...