Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673104

RESUMO

This study investigates the dynamics of moisture absorption and swelling in soft rock during tunnel excavation, emphasizing the response to support resistance. Utilizing COMSOL numerical simulations, we conduct a comparative analysis of various strength criteria and non-associated flow rules. The results demonstrate that the Mohr-Coulomb criterion combined with the Drucker-Prager model under compressive loads imposes stricter limitations on water absorption and expansion than when paired with the Drucker-Prager model under tensile loads. Restricted rock expansion leads to decreased horizontal displacement and ground uplift, increased displacement in the tunnel's bottom arch, and significantly reduced displacement in the top arch. The study also considers the effects of shear dilation, burial depth, and support resistance on the stress and displacement of the surrounding rock. Increased shear dilation angles correlate with greater rock expansion, resulting in increased horizontal displacement and ground uplift. The research study concludes that support resistance is critical in limiting the movement of the tunnel's bottom arch and impacting the stability of the surrounding rock. Additionally, the extent of rock damage during the excavation of expansive soft rock tunnels is found to be minimal. Overall, this study provides valuable insights into the processes of soft rock tunnel excavation and contributes to the development of more efficient support systems.

2.
Materials (Basel) ; 17(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473445

RESUMO

In order to optimize the efficiency and safety of gas hydrate extraction, it is essential to develop a credible constitutive model for sands containing hydrates. A model incorporating both cementation and damage was constructed to describe the behavior of hydrate-bearing cemented sand. This model is based on the critical state theory and builds upon previous studies. The damage factor Ds is incorporated to consider soil degradation and the reduction in hydrate cementation, as described by plastic shear strain. A computer program was developed to simulate the mechanisms of cementation and damage evolution, as well as the stress-strain curves of hydrate-bearing cemented sand. The results indicate that the model replicates the mechanical behavior of soil cementation and soil deterioration caused by impairment well. By comparing the theoretical curves with the experimental data, the compliance of the model was calculated to be more than 90 percent. The new state-dependent elasto-plastic constitutive model based on cementation and damage of hydrate-bearing cemented sand could provide vital guidance for the construction of deep-buried tunnels, extraction of hydrocarbon compounds, and development of resources.

3.
Materials (Basel) ; 17(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203911

RESUMO

The rapid advancement of science and technology has facilitated the creation of new technologies and techniques, leading to the convergence and diversification of fields [...].

4.
Materials (Basel) ; 14(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885571

RESUMO

Based on Lemaitre's strain equivalence hypothesis theory, it is assumed that the strength of acid-etching rock microelements under the coupling effect of temperature and confining pressure follows the Weibull distribution. Under the hypothesis that micro-element damage meets the D-P criterion and based on continuum damage mechanics and statistical theory, chemical damage variables, thermal damage variables and mechanical damage variables were introduced in the construction of damage evolution equations and constitutive models for acid-etching rocks considering the coupled effects of temperature and confining pressure. The required model parameters were obtained by theoretical derivation, and the model was verified based on the triaxial compression test data of granite. Comparing the experimental stress-strain curve with the theoretical stress-strain curve, the results show that they were in good agreement. By selecting reasonable model parameters, the damage statistical constitutive model can accurately reflect the stress-strain curve characteristics of rock in the process of triaxial compression. The comparison between the experimental and theoretical results also verifies the reasonableness and reliability of the model. This model provides a new rock damage statistical constitutive equation for the study of rock mechanics and its application in engineering, and has certain reference significance for rock underground engineering.

5.
Materials (Basel) ; 14(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919459

RESUMO

The cracking of rock mass under compression is the main factor causing structural failure. Therefore, it is very crucial to establish a rock damage evolution model to investigate the crack development process and reveal the failure and instability mechanism of rock under load. In this study, four different strength types of rock samples from hard to weak were selected, and the Voronoi method was used to perform and analyze uniaxial compression tests and the fracture process. The change characteristics of the number, angle, and length of cracks in the process of rock failure and instability were obtained. Three laws of crack development, damage evolution, and energy evolution were analyzed. The main conclusions are as follows. (1) The rock's initial damage is mainly caused by tensile cracks, and the rapid growth of shear cracks after exceeding the damage threshold indicates that the rock is about to be a failure. The development of micro-cracks is mainly concentrated on the diagonal of the rock sample and gradually expands to the middle along the two ends of the diagonal. (2) The identification point of failure precursor information in Acoustic Emission (AE) can effectively provide a safety warning for the development of rock fracture. (3) The uniaxial compression damage constitutive equation of the rock sample with the crack length as the parameter is established, which can better reflect the damage evolution characteristics of the rock sample. (4) Tensile crack requires low energy consumption and energy dispersion is not concentrated. The damage is not apparent. Shear cracks are concentrated and consume a large amount of energy, resulting in strong damage and making it easy to form macro-cracks.

6.
Sensors (Basel) ; 21(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375148

RESUMO

With increased urbanization, accidents related to slope instability are frequently encountered in construction sites. The deformation and failure mechanism of a landslide is a complex dynamic process, which seriously threatens people's lives and property. Currently, prediction and early warning of a landslide can be effectively performed by using Internet of Things (IoT) technology to monitor the landslide deformation in real time and an artificial intelligence algorithm to predict the deformation trend. However, if a slope failure occurs during the construction period, the builders and decision-makers find it challenging to effectively apply IoT technology to monitor the emergency and assist in proposing treatment measures. Moreover, for projects during operation (e.g., a motorway in a mountainous area), no recognized artificial intelligence algorithm exists that can forecast the deformation of steep slopes using the huge data obtained from monitoring devices. In this context, this paper introduces a real-time wireless monitoring system with multiple sensors for retrieving high-frequency overall data that can describe the deformation feature of steep slopes. The system was installed in the Qili connecting line of a motorway in Zhejiang Province, China, to provide a technical support for the design and implementation of safety solutions for the steep slopes. Most of the devices were retained to monitor the slopes even after construction. The machine learning Probabilistic Forecasting with Autoregressive Recurrent Networks (DeepAR) model based on time series and probabilistic forecasting was introduced into the project to predict the slope displacement. The predictive accuracy of the DeepAR model was verified by the mean absolute error, the root mean square error and the goodness of fit. This study demonstrates that the presented monitoring system and the introduced predictive model had good safety control ability during construction and good prediction accuracy during operation. The proposed approach will be helpful to assess the safety of excavated slopes before constructing new infrastructures.

7.
Environ Pollut ; 255(Pt 1): 113124, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31622956

RESUMO

The transport and retention behavior of polymer- (PVP-AgNP) and surfactant-stabilized (AgPURE) silver nanoparticles in carbonate-dominated saturated and unconsolidated porous media was studied at the laboratory scale. Initial column experiments were conducted to investigate the influence of chemical heterogeneity (CH) and nano-scale surface roughness (NR) arising from mixtures of clean, positively charged calcium carbonate sand (CCS), and negatively charged quartz sands. Additional column experiments were performed to elucidate the impact of CH and NR arising from the presence and absence of soil organic matter (SOM) on a natural carbonate-dominated aquifer material. The role of the nanoparticle capping agent was examined under all conditions tested in the column experiments. Nanoparticle transport was well described using a numerical model that facilitated blocking on one or two retention sites. Results demonstrate that an increase in CCS content in the artificially mixed porous medium leads to delayed breakthrough of the AgNPs, although AgPURE was much less affected by the CCS content than PVP-AgNPs. Interestingly, only a small portion of the solid surface area contributed to AgNP retention, even on positively charged CCS, due to the presence of NR which weakened the adhesive interaction. The presence of SOM enhanced the retention of AgPURE on the natural carbonate-dominated aquifer material, which can be a result of hydrophobic or hydrophilic interactions or due to cation bridging. Surprisingly, SOM had no significant impact on PVP-AgNP retention, which suggests that a reduction in electrostatic repulsion due to the presence of SOM outweighs the relative importance of other binding mechanisms. Our findings are important for future studies related to AgNP transport in shallow unconsolidated calcareous and siliceous sands.


Assuntos
Carbonato de Cálcio/análise , Nanopartículas Metálicas/análise , Compostos Orgânicos/química , Prata/análise , Solo/química , Água Subterrânea/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Porosidade , Quartzo/química , Solo/classificação , Tensoativos
8.
Environ Pollut ; 236: 195-207, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29414340

RESUMO

Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer media with varying content of material < 0.063 mm in diameter (silt and clay fraction), background solution chemistry, and flow velocity. Breakthrough curves for Ag-ENPs exhibited blocking behavior that frequently produced a delay in arrival time in comparison to a conservative tracer that was dependent on the physicochemical conditions, and then a rapid increase in the effluent concentration of Ag-ENPs. This breakthrough behavior was accurately described using one or two irreversible retention sites that accounted for Langmuirian blocking on one site. Simulated values for the total retention rate coefficient and the maximum solid phase concentration of Ag-ENPs increased with increasing solution ionic strength, cation valence, clay and silt content, decreasing flow velocity, and for polymer-instead of surfactant-stabilized Ag-ENPs. Increased Ag-ENP retention with ionic strength occurred because of compression of the double layer and lower magnitudes in the zeta potential, whereas lower velocities increased the residence time and decreased the hydrodynamics forces. Enhanced Ag-ENP interactions with cation valence and clay were attributed to the creation of cation bridging in the presence of Ca2+. The delay in breakthrough was always more pronounced for polymer-than surfactant-stabilized Ag-ENPs, because of differences in the properties of the stabilizing agents and the magnitude of their zeta-potential was lower. Our results clearly indicate that the long-term transport behavior of Ag-ENPs in natural, silicate dominated aquifer material will be strongly dependent on blocking behavior that changes with the physicochemical conditions and enhanced Ag-ENP transport may occur when retention sites are filled.


Assuntos
Água Subterrânea/química , Nanopartículas Metálicas/análise , Polímeros/química , Silicatos/química , Prata/análise , Tensoativos/química , Silicatos de Alumínio/química , Argila , Nanopartículas Metálicas/química , Modelos Teóricos , Concentração Osmolar , Prata/química
9.
Sensors (Basel) ; 16(7)2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27447630

RESUMO

The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized.

10.
Sci Total Environ ; 535: 102-12, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25527873

RESUMO

It is considered inevitable that the increasing production and application of engineered nanoparticles will lead to their release into the environment. However, the behavior of these materials under environmentally relevant conditions is still only poorly understood. In this study the transport and deposition behavior of engineered surfactant stabilized silver nanoparticles (AgNPs) in water saturated porous media was investigated in transport experiments with glass beads as reference porous medium and in two natural soils under various hydrodynamic and hydrochemical conditions. The transport and retention processes of AgNPs in the porous media were elucidated by inverse modeling and possible particle size changes occurring during the transport through the soil matrix were analyzed with flow field-flow fractionation (FlFFF). A high mobility of AgNPs was observed in loamy sand under low ionic strength (IS) conditions and at high flow rates. The transport was inhibited at low flow rates, at higher IS, in the presence of divalent cations and in a more complex, fine-grained silty loam. The slight decrease of the mean particle size of the AgNPs in almost all experiments indicates size selective filtration processes and enables the exclusion of homoaggregation processes.


Assuntos
Nanopartículas Metálicas/análise , Modelos Químicos , Prata/análise , Poluentes Químicos da Água/análise , Concentração Osmolar , Tamanho da Partícula , Porosidade , Dióxido de Silício
11.
J Contam Hydrol ; 164: 181-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24992708

RESUMO

Transport behavior and fate of engineered silver nanoparticles (AgNP) in the subsurface is of major interest concerning soil and groundwater protection in order to avoid groundwater contamination of vital resources. Sandstone aquifers are important groundwater resources which are frequently used for public water supply in many regions of the world. The objective of this study is to get a better understanding of AgNP transport behavior in partially fractured sandstones. We executed AgNP transport studies on partially fissured sandstone drilling cores in laboratory experiments. The AgNP concentration and AgNP size in the effluent were analyzed using flow field-flow fractionation mainly. We employed inverse mathematical models on the measured AgNP breakthrough curves to identify and quantify relevant transport processes. Physicochemical filtration, time-dependent blocking due to filling of favorable attachment sites and colloid-facilitated transport were identified as the major processes for AgNP mobility. Physicochemical filtration was found to depend on solute chemistry, mineralogy, pore size distribution and probably on physical and chemical heterogeneity. Compared to AgNP transport in undisturbed sandstone matrix reported in the literature, their mobility in partially fissured sandstone is enhanced probably due to larger void spaces and higher hydraulic conductivity.


Assuntos
Água Subterrânea/química , Nanopartículas Metálicas/química , Modelos Químicos , Prata/química , Coloides , Filtração , Tamanho da Partícula , Permeabilidade
12.
J Contam Hydrol ; 158: 1-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389393

RESUMO

Engineered nanoparticles are increasingly applied in consumer products and concerns are rising regarding their risk as potential contaminants or carriers for colloid-facilitated contaminant transport. Engineered silver nanoparticles (AgNP) are among the most widely used nanomaterials in consumer products. However, their mobility in groundwater has been scarcely investigated. In this study, transport of stabilized AgNP through porous sandstones with variations in mineralogy, pore size distribution and permeability is investigated in laboratory experiments with well-defined boundary conditions. The AgNP samples were mainly characterized by asymmetric flow field-flow fractionation coupled to a multi-angle static laser light detector and ultraviolet-visible spectroscopy for determination of particle size and concentration. The rock samples are characterized by mercury porosimetry, flow experiments and solute tracer tests. Solute and AgNP breakthrough was quantified by applying numerical models considering one kinetic site model for particle transport. The transport of AgNP strongly depends on pore size distribution, mineralogy and the solution ionic strength. Blocking of attachment sites results in less reactive transport with increasing application of AgNP mass. AgNPs were retained due to physicochemical filtration and probably due to straining. The results demonstrate the restricted applicability of AgNP transport parameters determined from simplified experimental model systems to realistic environmental matrices.


Assuntos
Água Subterrânea/química , Nanopartículas Metálicas/análise , Prata , Purificação da Água/métodos , Filtração/métodos , Nanopartículas Metálicas/química , Tamanho da Partícula , Permeabilidade
13.
Bioresour Technol ; 102(9): 5283-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21232937

RESUMO

Nitrate sorption potentials of three surface soils (soils-1-3) were evaluated under different solute concentrations, i.e. 1-100 mg L(-1). Batch and diffusion-cell adsorption experiments were conducted to delineate the diffusion property and maximum specific nitrate adsorption capacity (MSNAC) of the soils. Ho's pseudo-second order model well fitted the batch adsorption kinetics data (R(2)>0.99). Subsequently, the MSNAC was estimated using Langmuir and Freundlich isotherms; however, the best-fit was obtained with Langmuir isotherm. Interestingly, the batch adsorption experiments over-estimated the MSNAC of the soils compared with the diffusion-cell tests. On the other hand, a proportionate increase in the MSNAC was observed with the increase in soil organic matter content (OM) under the batch and diffusion-cell tests. Therefore, increasing the soil OM by the application of natural compost could stop nitrate leaching from agricultural fields and also increase the fertility of soil.


Assuntos
Recuperação e Remediação Ambiental/métodos , Nitratos/isolamento & purificação , Compostos Orgânicos/química , Adsorção , Difusão , Cinética , Solo/química , Temperatura
14.
Sci Total Environ ; 408(2): 245-54, 2009 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-19853887

RESUMO

Intrinsic vulnerability assessment to groundwater contamination is part of groundwater management in many areas of the world. However, popular assessment methods estimate vulnerability only qualitatively. To enhance vulnerability assessment, an approach for quantitative vulnerability assessment using numerical simulation of water flow and solute transport with transient boundary conditions and new vulnerability indicators are presented in this work. Based on a conceptual model of the unsaturated underground with distinct hydrogeological layers and site specific hydrological characteristics the numerical simulations of water flow and solute transport are applied on each hydrogeological layer with standardized conditions separately. Analysis of the simulation results reveals functional relationships between layer thickness, groundwater recharge and transit time. Based on the first, second and third quartiles of solute mass breakthrough at the lower boundary of the unsaturated zone, and the solute dilution, four vulnerability indicators are extracted. The indicator transit time t(50) is the time were 50% of solute mass breakthrough passes the groundwater table. Dilution is referred as maximum solute concentration C(max) in the percolation water when entering the groundwater table in relation to the injected mass or solute concentration C(0) at the ground surface. Duration of solute breakthrough is defined as the time period between 25% and 75% (t(25%)-t(75%)) of total solute mass breakthrough at the groundwater table. The temporal shape of the breakthrough curve is expressed with the quotient (t(25%)-t(50%))/(t(25%)-t(75%)). Results from an application of this new quantitative vulnerability assessment approach, its advantages and disadvantages, and potential benefits for future groundwater management strategies are discussed.


Assuntos
Água Doce/química , Modelos Químicos , Movimentos da Água , Poluentes Químicos da Água/química , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...