Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(15): 7988-8004, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37395445

RESUMO

Fanconi anemia (FA) is a genetic disorder associated with developmental defects, bone marrow failure and cancer. The FA pathway is crucial for the repair of DNA interstrand crosslinks (ICLs). In this study, we have developed and characterized a new tool to investigate ICL repair: a clickable version of the crosslinking agent melphalan which we name click-melphalan. Our results demonstrate that click-melphalan is as effective as its unmodified counterpart in generating ICLs and associated toxicity. The lesions induced by click-melphalan can be detected in cells by post-labelling with a fluorescent reporter and quantified using flow cytometry. Since click-melphalan induces both ICLs and monoadducts, we generated click-mono-melphalan, which only induces monoadducts, in order to distinguish between the two types of DNA repair. By using both molecules, we show that FANCD2 knock-out cells are deficient in removing click-melphalan-induced lesions. We also found that these cells display a delay in repairing click-mono-melphalan-induced monoadducts. Our data further revealed that the presence of unrepaired ICLs inhibits monoadduct repair. Finally, our study demonstrates that these clickable molecules can differentiate intrinsic DNA repair deficiencies in primary FA patient cells from those in primary xeroderma pigmentosum patient cells. As such, these molecules may have potential for developing diagnostic tests.


Assuntos
Anemia de Fanconi , Melfalan , Humanos , Melfalan/farmacologia , Anemia de Fanconi/patologia , Reparo do DNA , Dano ao DNA , DNA
2.
NAR Cancer ; 5(3): zcad029, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37325550

RESUMO

Ovarian cancer is driven by genetic alterations that necessitate protective DNA damage and replication stress responses through cell cycle control and genome maintenance. This creates specific vulnerabilities that may be exploited therapeutically. WEE1 kinase is a key cell cycle control kinase, and it has emerged as a promising cancer therapy target. However, adverse effects have limited its clinical progress, especially when tested in combination with chemotherapies. A strong genetic interaction between WEE1 and PKMYT1 led us to hypothesize that a multiple low-dose approach utilizing joint WEE1 and PKMYT1 inhibition would allow exploitation of the synthetic lethality. We found that the combination of WEE1 and PKMYT1 inhibition exhibited synergistic effects in eradicating ovarian cancer cells and organoid models at a low dose. The WEE1 and PKMYT1 inhibition synergistically promoted CDK activation. Furthermore, the combined treatment exacerbated DNA replication stress and replication catastrophe, leading to increase of the genomic instability and inflammatory STAT1 signalling activation. These findings suggest a new multiple low-dose approach to harness the potency of WEE1 inhibition through the synthetic lethal interaction with PKMYT1 that may contribute to the development of new treatments for ovarian cancer.

3.
Cell Death Dis ; 13(2): 96, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110528

RESUMO

Replication stress (RS) has a pivotal role in tumor initiation, progression, or therapeutic resistance. In this study, we depicted the mechanism of breast cancer stem cells' (bCSCs) response to RS and its clinical implication. We demonstrated that bCSCs present a limited level of RS compared with non-bCSCs in patient samples. We described for the first time that the spatial nuclear location of BMI1 protein triggers RS response in breast cancers. Hence, in bCSCs, BMI1 is rapidly located to stalled replication forks to recruit RAD51 and activate homologous-recombination machinery, whereas in non-bCSCs BMI1 is trapped on demethylated 1q12 megasatellites precluding effective RS response. We further demonstrated that BMI1/RAD51 axis activation is necessary to prevent cisplatin-induced DNA damage and that treatment of patient-derived xenografts with a RAD51 inhibitor sensitizes tumor-initiating cells to cisplatin. The comprehensive view of replicative-stress response in bCSC has profound implications for understanding and improving therapeutic resistance.


Assuntos
Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Complexo Repressor Polycomb 1/metabolismo , Rad51 Recombinase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Recombinação Homóloga , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Rad51 Recombinase/antagonistas & inibidores
4.
Sci Adv ; 7(39): eabc7371, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559557

RESUMO

Ubiquitin-fold modifier 1 (UFM1) is involved in neural and erythroid development, yet its biological roles in these processes are unknown. Here, we generated zebrafish models deficient in Ufm1 and Ufl1 that exhibited telomere shortening associated with developmental delay, impaired hematopoiesis and premature aging. We further report that HeLa cells lacking UFL1 have instability of telomeres replicated by leading-strand synthesis. We uncover that MRE11 UFMylation is necessary for the recruitment of the phosphatase PP1-α leading to dephosphorylation of NBS1. In the absence of UFMylation, NBS1 remains phosphorylated, thereby reducing MRN recruitment to telomeres. The absence of MRN at telomeres favors the formation of the TRF2-Apollo/SNM1 complex consistent with the loss of leading telomeres. These results suggest that MRE11-UFMylation may serve as module to recruit PP1-α. Last, zebrafish expressing Mre11 that cannot be UFMylated phenocopy Ufm1-deficient zebrafish, demonstrating that UFMylation of MRE11 is a previously undescribed evolutionarily conserved mechanisms regulating telomere length.

5.
EMBO Mol Med ; 11(10): e9930, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31476112

RESUMO

Therapeutic resistance is a major clinical challenge in oncology. Evidence identifies cancer stem cells (CSCs) as a driver of tumor evolution. Accordingly, the key stemness property unique to CSCs may represent a reservoir of therapeutic target to improve cancer treatment. Here, we carried out a genome-wide RNA interference screen to identify genes that regulate breast CSCs-fate (bCSC). Using an interactome/regulome analysis, we integrated screen results in a functional mapping of the CSC-related processes. This network analysis uncovered potential therapeutic targets controlling bCSC-fate. We tested a panel of 15 compounds targeting these regulators. We showed that mifepristone, salinomycin, and JQ1 represent the best anti-bCSC activity. A combination assay revealed a synergistic interaction of salinomycin/JQ1 association to deplete the bCSC population. Treatment of primary breast cancer xenografts with this combination reduced the tumor-initiating cell population and limited metastatic development. The clinical relevance of our findings was reinforced by an association between the expression of the bCSC-related networks and patient prognosis. Targeting bCSCs with salinomycin/JQ1 combination provides the basis for a new therapeutic approach in the treatment of breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Descoberta de Drogas/métodos , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Células-Tronco Neoplásicas/fisiologia , Interferência de RNA , Antineoplásicos/farmacologia , Feminino , Redes Reguladoras de Genes , Humanos , Mapas de Interação de Proteínas , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...