Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511035

RESUMO

Olfactory receptors (ORs), key components in ensuring the detection of myriad odorants, are expressed not only on the surface of olfactory neurons but also in many other tissues. In the case of ORs expressed at the sperm membrane, in vitro experiments with human and mouse spermatozoids have shown that they move toward the regions with the highest concentration of bourgeonal and lyral, respectively. However, to date, no in vivo experiment has shown any biological function of these ORs. To demonstrate a possible role in vivo of ORs in sperm chemotaxis, we overloaded the vaginal space of female mice from the prolific Swiss CD1 strain with lyral to induce competition with the supposed natural ligand and to prevent its detection. As shown, the mice that received lyral had much fewer newborns than the control mice treated with PBS, showing that lyral has a strong negative impact on procreation. This indicates that the ORs at the sperm surface are biologically active and make an important contribution to reproduction. Control experiments performed with hexanal, which does not alter sperm movement in vitro, indicate that the inhibition of reproduction observed was specific to lyral. In addition, we show that males are attracted to the smell of lyral, which acts as a pheromone, and prefer to copulate with mice marked on their back with lyral rather than with those that have not been marked. These results suggest an explanation for some cases of human infertility, which could result from an absence of recognition between the natural ligand and the ORs, either due to a mutation or a lack of expression from one of the two partners, allowing for the development of a diagnostic tests. These results might also lead to the development of a novel contraception strategy based on the use of vaginal tablets delivering an odorant or a drug that competes with the natural ligand.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Recém-Nascido , Humanos , Masculino , Camundongos , Feminino , Animais , Receptores Odorantes/metabolismo , Ligantes , Sêmen/metabolismo , Espermatozoides/metabolismo , Odorantes , Reprodução , Neurônios Receptores Olfatórios/metabolismo
2.
Canine Med Genet ; 9(1): 7, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596227

RESUMO

Dogs have an exquisite sense of olfaction. In many instances this ability has been utilized by humans for a wide range of important situations including detecting explosives and illegal drugs. It is accepted that some breeds have better senses of smell than others. Dogs can detect many volatile compounds at extremely low concentrations in air. To achieve such high levels of detection, the canine olfactory system is both complex and highly developed requiring a high density of olfactory receptors capable of detecting volatiles. Consequently the dog genome encodes a large number of olfactory receptor (OR) genes. However, it remains unclear as to what extent are all of these OR genes expressed on the cell surface. To facilitate such studies, a nasal brushing method was developed to recover dog nasal epithelial cell samples from which total RNA could be extracted and used to prepare high quality cDNA libraries. After capture by hybridization with an extensive set of oligonucleotides, the level of expression of each transcript was measured following next generation sequencing (NGS). The reproducibility of this sampling approach was checked by analyzing replicate samples from the same animal (up to 6 per each naris). The quality of the hybridization capture was also checked by analyzing two DNA libraries; this offered an advantage over RNA libraries by having an equal presence for each gene. Finally, we compared this brushing method performed on living dogs to a nasal epithelium biopsy approach applied to two euthanized terminally ill dogs, following consent from their owners.Comparison the expression levels of each transcript indicate that the ratios of expression between the highest and the least expressed OR in each sample are greater than 10,000 (paralog variation). Furthermore, it was clear that a number of OR genes are not expressed.The method developed and described here will allow researchers to further address whether variations observed in the OR transcriptome relate to dog 'life experiences' and whether any differences observed between samples are dog-specific or breed-specific.

3.
BMC Genomics ; 16: 335, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25900688

RESUMO

BACKGROUND: TAARs (trace amine-associated receptors) are among the principal receptors expressed by the olfactory epithelium. We used the recent BROAD Institute release of the genome sequences of five representative fishes of the cichlid family to establish the complete TAAR repertoires of these species and to compare them with five other fish TAAR repertoires. RESULTS: The genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were analyzed by exhaustive TBLASTN searches with a set of published TAAR gene sequences used as positive bait. A second TBLASTN analysis was then performed on the candidate genes, with a set of non-TAAR class A GPCR (G protein-coupled receptors) used as negative bait. The resulting cichlid repertoire contained 44 complete TAAR genes from O. niloticus, 18 from P. nyererei, 23 from H. burtoni, 12 from N. brichardi and 20 from M. zebra, plus a number of pseudogenes, edge genes and fragments. A large proportion of these sequences (80%) consisted of two coding exons, separated in all but two cases by an intron in the interloop 1 coding sequence. We constructed phylogenetic trees. These trees indicated that TAARs constitute a distinct clade, well separated from ORs (olfactory receptors) and other class A GPCRs. Also these repertoires consist of several families and subfamilies, a number of which are common to fugu, tetraodon, stickleback and medaka. Like all other TAARs identified to date, cichlid TAARs have a characteristic two-dimensional structure and contain a number of amino-acid motifs or amino acids, such cysteine, in particular conserved positions. CONCLUSIONS: Little is known about the functions of TAARs: in most cases their ligands have yet to be identified, partly because appropriate methods for such investigations have not been developed. Sequences analyses and comparisons of TAARs in several animal species, here fishes living in the same environment, should help reveal their roles and whether they are complementary to that of ORs.


Assuntos
Ciclídeos/genética , Proteínas de Peixes/genética , Genoma , Receptores Acoplados a Proteínas G/genética , Motivos de Aminoácidos , Animais , Ciclídeos/classificação , Mapeamento de Sequências Contíguas , Evolução Molecular , Proteínas de Peixes/classificação , Proteínas de Peixes/metabolismo , Peixes/classificação , Peixes/genética , Filogenia , Sítios de Splice de RNA/genética , Receptores Acoplados a Proteínas G/metabolismo
4.
Nature ; 513(7518): 375-381, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25186727

RESUMO

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Evolução Molecular , Especiação Genética , Genoma/genética , África Oriental , Animais , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica/genética , Genômica , Lagos , MicroRNAs/genética , Filogenia , Polimorfismo Genético/genética
5.
BMC Genomics ; 15: 586, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25015101

RESUMO

BACKGROUND: To help understand the molecular mechanisms underlying the remarkable phenotypic diversity displayed by cichlids, the genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were recently determined. Here, we present the contents of the olfactory receptor (OR) repertoires in the genomes of these five fishes. RESULTS: We performed an exhaustive TBLASTN search of the five cichlid genomes to identify their OR repertoires as completely as possible. We used as bait a set of ORs described in the literature. The cichlid repertoires thereby extracted contained large numbers of complete genes (O. niloticus 158; H. burtoni 90; M. zebra 102; N. brichardi 69; P. nyererei 88), a small numbers of pseudogenes and many "edge genes" corresponding to incomplete genes located at the ends of contigs. A phylogenetic tree was constructed and showed these repertoires include a large number of families and subfamilies. It also allowed the identification of a large number of OR analogues between cichlids with very high amino-acid identity (≥ 99%). Nearly 9% of the full-length cichlid OR genes are composed of several coding exons. This is very unusual for vertebrate OR genes. Nevertheless, the evidence is strong, and includes the donor and acceptor splice junction sequences; also, the positions of these genes in the phylogenetic tree indicate that they constitute subfamilies well apart from non-OR G protein-coupled receptor families. CONCLUSIONS: Cichlid OR repertoires are made up of a larger number of genes and fewer pseudogenes than those in other teleosts except zebrafish. These ORs share all identified properties common to all fish ORs; however, the large number of families and subfamilies, each containing few ORs implies that they have evolved more rapidly. This high level of OR diversity is consistent with the substantial phenotypic diversity that characterizes cichlids.


Assuntos
Ciclídeos/genética , Receptores Odorantes/genética , Motivos de Aminoácidos , Animais , Éxons , Peixes/genética , Genoma , Família Multigênica , Filogenia , Receptores Odorantes/química , Receptores Odorantes/classificação
6.
BMC Genomics ; 13: 222, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22672252

RESUMO

BACKGROUND: The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. RESULTS: We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR(3500) and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. CONCLUSION: The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia and the other model fishes. These maps represent a valuable resource for organizing the forthcoming genome sequence of Nile tilapia, and provide a foundation for evolutionary studies of East African cichlid fishes.


Assuntos
Ciclídeos/genética , Genoma , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/metabolismo , Hibridização Genômica Comparativa , Etiquetas de Sequências Expressas , Ligação Genética , Genótipo , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Mapeamento de Híbridos Radioativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...