Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biogeogr ; 49(8): 1420-1442, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247109

RESUMO

Aim: Climate change is expected to impact mountain biodiversity by shifting species ranges and the biomes they shape. The extent and regional variation in these impacts are still poorly understood, particularly in the highly biodiverse Andes. Regional syntheses of climate change impacts on vegetation are pivotal to identify and guide research priorities. Here we review current data, knowledge and uncertainties in past, present and future climate change impacts on vegetation in the Andes. Location: Andes. Taxon: Plants. Methods: We (i) conducted a literature review on Andean vegetation responses to past and contemporary climatic change, (ii) analysed future climate projections for different elevations and slope orientations at 19 Andean locations using an ensemble of model outputs from the Coupled Model Intercomparison Project 5, and (iii) calculated changes in the suitable climate envelope area of Andean biomes and compared these results to studies that used species distribution models. Results: Future climatic changes (2040-2070) are projected to be stronger at high-elevation areas in the tropical Andes (up to 4°C under RCP 8.5), while in the temperate Andes temperature increases are projected to be up to 2°C. Under this worst-case scenario, temperate deciduous forests and the grasslands/steppes from the Central and Southern Andes are predicted to show the greatest losses of suitable climatic space (30% and 17%-23%, respectively). The high vulnerability of these biomes contrasts with the low attention from researchers modelling Andean species distributions. Critical knowledge gaps include a lack of an Andean wide plant checklist, insufficient density of weather stations at high-elevation areas, a lack of high-resolution climatologies that accommodates the Andes' complex topography and climatic processes, insufficient data to model demographic and ecological processes, and low use of palaeo data for distribution modelling. Main conclusions: Climate change is likely to profoundly affect the extent and composition of Andean biomes. Temperate Andean biomes in particular are susceptible to substantial area contractions. There are, however, considerable challenges and uncertainties in modelling species and biome responses and a pressing need for a region-wide approach to address knowledge gaps and improve understanding and monitoring of climate change impacts in these globally important biomes.

2.
Sci Data ; 9(1): 511, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987763

RESUMO

We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY's next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot.


Assuntos
Biodiversidade , Plantas , Fenótipo , Folhas de Planta , Madeira
3.
PLoS One ; 17(4): e0263508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35442987

RESUMO

Understanding variation in tree functional traits along topographic gradients and through time provides insights into the processes that will shape community composition and determine ecosystem functioning. In montane environments, complex topography is known to affect forest structure and composition, yet its role in determining trait composition, indices on community climatic tolerances, and responses to changing environmental conditions has not been fully explored. This study investigates how functional trait composition (characterized as community-weighted moments) and community climatic indices vary for the tree community as a whole and for its separate demographic components (i.e., dying, surviving, recruiting trees) over eight years in a topographically complex tropical Andean forest in southern Ecuador. We identified a strong influence of topography on functional composition and on species' climatic optima, such that communities at lower topographic positions were dominated by acquisitive species adapted to both warmer and wetter conditions compared to communities at upper topographic positions which were dominated by conservative cold adapted species, possibly due to differences in soil conditions and hydrology. Forest functional and climatic composition remained stable through time; and we found limited evidence for trait-based responses to environmental change among demographic groups. Our findings confirm that fine-scale environmental conditions are a critical factor structuring plant communities in tropical forests, and suggest that slow environmental warming and community-based processes may promote short-term community functional stability. This study highlights the need to explore how diverse aspects of community trait composition vary in tropical montane forests, and to further investigate thresholds of forest response to environmental change.


Assuntos
Ecossistema , Árvores , Florestas , Plantas , Solo/química , Clima Tropical
4.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260386

RESUMO

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


Assuntos
Fabaceae/fisiologia , Pradaria , Internacionalidade , Nitrogênio/farmacologia , Fósforo/farmacologia , Biodiversidade , Biomassa , Fabaceae/efeitos dos fármacos , Probabilidade
5.
Ecol Evol ; 11(24): 17744-17761, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003636

RESUMO

Biotic and abiotic factors interact with dominant plants-the locally most frequent or with the largest coverage-and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.

6.
PLoS One ; 15(4): e0231553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32311701

RESUMO

Our knowledge about the structure and function of Andean forests at regional scales remains limited. Current initiatives to study forests over continental or global scales still have important geographical gaps, particularly in regions such as the tropical and subtropical Andes. In this study, we assessed patterns of structure and tree species diversity along ~ 4000 km of latitude and ~ 4000 m of elevation range in Andean forests. We used the Andean Forest Network (Red de Bosques Andinos, https://redbosques.condesan.org/) database which, at present, includes 491 forest plots (totaling 156.3 ha, ranging from 0.01 to 6 ha) representing a total of 86,964 identified tree stems ≥ 10 cm diameter at breast height belonging to 2341 identified species, 584 genera and 133 botanical families. Tree stem density and basal area increases with elevation while species richness decreases. Stem density and species richness both decrease with latitude. Subtropical forests have distinct tree species composition compared to those in the tropical region. In addition, floristic similarity of subtropical plots is between 13 to 16% while similarity between tropical forest plots is between 3% to 9%. Overall, plots ~ 0.5-ha or larger may be preferred for describing patterns at regional scales in order to avoid plot size effects. We highlight the need to promote collaboration and capacity building among researchers in the Andean region (i.e., South-South cooperation) in order to generate and synthesize information at regional scale.


Assuntos
Altitude , Biodiversidade , Florestas , Árvores , Clima , América do Sul
8.
Nature ; 564(7735): 207-212, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30429613

RESUMO

Global warming is forcing many species to shift their distributions upward, causing consequent changes in the compositions of species that occur at specific locations. This prediction remains largely untested for tropical trees. Here we show, using a database of nearly 200 Andean forest plot inventories spread across more than 33.5° latitude (from 26.8° S to 7.1° N) and 3,000-m elevation (from 360 to 3,360 m above sea level), that tropical and subtropical tree communities are experiencing directional shifts in composition towards having greater relative abundances of species from lower, warmer elevations. Although this phenomenon of 'thermophilization' is widespread throughout the Andes, the rates of compositional change are not uniform across elevations. The observed heterogeneity in thermophilization rates is probably because of different warming rates and/or the presence of specialized tree communities at ecotones (that is, at the transitions between distinct habitats, such as at the timberline or at the base of the cloud forest). Understanding the factors that determine the directions and rates of compositional changes will enable us to better predict, and potentially mitigate, the effects of climate change on tropical forests.


Assuntos
Aclimatação , Altitude , Biodiversidade , Florestas , Aquecimento Global , Temperatura , Árvores/classificação , Árvores/fisiologia , Bases de Dados Factuais , Planejamento em Desastres/tendências , Desastres/prevenção & controle , Previsões/métodos , Especificidade da Espécie , Clima Tropical
9.
Proc Natl Acad Sci U S A ; 115(8): 1837-1842, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432167

RESUMO

Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.


Assuntos
Florestas , Filogenia , Plantas/classificação , Plantas/genética , Clima Tropical , Biodiversidade , Conservação dos Recursos Naturais , Monitoramento Ambiental
10.
Glob Chang Biol ; 24(1): 399-409, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28921844

RESUMO

Trait-response effects are critical to forecast community structure and biomass production in highly diverse tropical forests. Ecological theory and few observation studies indicate that trees with acquisitive functional traits would respond more strongly to higher resource availability than those with conservative traits. We assessed how long-term tree growth in experimental nutrient addition plots (N, P, and N + P) varied as a function of morphological traits, tree size, and species identity. We also evaluated how trait-based responses affected stand scale biomass production considering the community structure. We found that tree growth depended on interactions between functional traits and the type or combination of nutrients added. Common species with acquisitive functional traits responded more strongly to nutrient addition, mainly to N + P. Phosphorous enhanced the growth rates of species with acquisitive and conservative traits, had mostly positive effects on common species and neutral or negative effects in rare species. Moreover, trees receiving N + P grew faster irrespective of their initial size relative to trees in control or to trees in other treatment plots. Finally, species responses were highly idiosyncratic suggesting that community processes including competition and niche dimensionality may be altered under increased resource availability. We found no statistically significant effects of nutrient additions on aboveground biomass productivity because acquisitive species had a limited potential to increase their biomass, possibly due to their generally lower wood density. In contrast, P addition increased the growth rates of species characterized by more conservative resource strategies (with higher wood density) that were poorly represented in the plant community. We provide the first long-term experimental evidence that trait-based responses, community structure, and community processes modulate the effects of increased nutrient availability on biomass productivity in a tropical forest.


Assuntos
Florestas , Nitrogênio , Fósforo , Árvores/crescimento & desenvolvimento , Clima Tropical , Biomassa , Fenótipo , Madeira
11.
Am Nat ; 188(5): 567-575, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27788348

RESUMO

How ecological context shapes mutualistic relationships remains poorly understood. We combined long-term tree census data with ant censuses in a permanent 25-ha Amazonian forest dynamics plot to evaluate the effect of the mutualistic ant Myrmelachista schumanni (Formicinae) on the growth and survival of the common Amazonian tree Duroia hirsuta (Rubiaceae), considering its interactions with tree growth, population structure, and habitat. We found that the mutualist ant more than doubled tree relative growth rates and increased odds of survival. However, host tree size and density of conspecific neighbors modified the effect of the ant. Smaller trees hosting the mutualist ant consistently grew faster when surrounded by higher densities of conspecifics, suggesting that the benefit to the tree outweighs any negative effects of high conspecific densities. Moreover, our findings suggest that the benefit afforded by the ant diminishes with plant age and also depends on the density of conspecific neighbors. We provide the first long-term large-scale evidence of how mutualism affects the population biology of an Amazonian tree species.


Assuntos
Formigas , Simbiose , Animais , Ecossistema , Rubiaceae , Árvores
12.
Artigo em Inglês | MEDLINE | ID: mdl-27114575

RESUMO

Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.


Assuntos
Biota/fisiologia , Clima , Eutrofização , Pradaria , Espécies Introduzidas , Mudança Climática , Micronutrientes/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Fenômenos Fisiológicos Vegetais , Potássio/metabolismo
13.
PLoS One ; 10(5): e0126594, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973977

RESUMO

General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.


Assuntos
Florestas , Biodiversidade , Modelos Lineares , Análise de Componente Principal , Árvores/crescimento & desenvolvimento
14.
Oecologia ; 172(4): 1117-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23263528

RESUMO

Aridland ecosystems are predicted to be responsive to both increases and decreases in precipitation. In addition, chronic droughts may contribute to encroachment of native C3 shrubs into C4-dominated grasslands. We conducted a long-term rainfall manipulation experiment in native grassland, shrubland and the grass-shrub ecotone in the northern Chihuahuan Desert, USA. We evaluated the effects of 5 years of experimental drought and 4 years of water addition on plant community structure and dynamics. We assessed the effects of altered rainfall regimes on the abundance of dominant species as well as on species richness and subdominant grasses, forbs and shrubs. Nonmetric multidimensional scaling and MANOVA were used to quantify changes in species composition in response to chronic addition or reduction of rainfall. We found that drought consistently and strongly decreased cover of Bouteloua eriopoda, the dominant C4 grass in this system, whereas water addition slightly increased cover, with little variation between years. In contrast, neither chronic drought nor increased rainfall had consistent effects on the cover of Larrea tridentata, the dominant C3 shrub. Species richness declined in shrub-dominated vegetation in response to drought whereas richness increased or was unaffected by water addition or drought in mixed- and grass-dominated vegetation. Cover of subdominant shrubs, grasses and forbs changed significantly over time, primarily in response to interannual rainfall variability more so than to our experimental rainfall treatments. Nevertheless, drought and water addition shifted the species composition of plant communities in all three vegetation types. Overall, we found that B. eriopoda responded strongly to drought and less so to irrigation, whereas L. tridentata showed limited response to either treatment. The strong decline in grass cover and the resistance of shrub cover to rainfall reduction suggest that chronic drought may be a key factor promoting shrub dominance during encroachment into desert grassland.


Assuntos
Clima Desértico , Ecossistema , Larrea , Poaceae , Chuva , New Mexico
15.
Environ Sci Technol ; 46(4): 1971-6, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22260091

RESUMO

Data availability in environmental sciences is growing rapidly. Conventional monitoring systems are collecting data at increasing spatial and temporal resolutions; satellites provide a constant stream of global observations, and citizen scientist generate local data with electronic gadgets and cheap devices. There is a need to process this stream of heterogeneous data into useful information, both for science and for decision-making. Advances in networking and computer technologies increasingly enable accessing, combining, processing, and visualizing these data. This Feature reflects upon the role of environmental models in this process. We consider models as the primary tool for data processing, pattern identification, and scenario analysis. As such, they are an essential element of science-based decision-making. The new technologies analyzed here have the potential to turn the typical top-down flow of information from scientists to users into a much more direct, interactive approach. This may accelerate the dissemination of environmental information to a larger community of users. It may also facilitate harvesting feedback, and evaluating simulations and predictions from different perspectives. However, the evolution poses challenges, not only to model development but also to the communication of model results and their assumptions, shortcomings, and errors.


Assuntos
Tomada de Decisões , Ecologia , Internet , Modelos Teóricos , Simulação por Computador
16.
PLoS One ; 3(6): e2332, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18523686

RESUMO

BACKGROUND: Global climate change is rapidly altering species range distributions and interactions within communities. As ranges expand, invading species change interactions in communities which may reduce stability, a mechanism known to affect biodiversity. In aridland ecosystems worldwide, the range of native shrubs is expanding as they invade and replace native grassland vegetation with significant consequences for biodiversity and ecosystem functioning. METHODOLOGY: We used two long-term data sets to determine the effects of shrub encroachment by Larrea tridentata on subdominant community composition and stability in formerly native perennial grassland dominated by Bouteloua eriopoda in New Mexico, USA. PRINCIPAL FINDINGS: Our results indicated that Larrea invasion decreased species richness during the last 100 years. We also found that over shorter temporal scales species-poor subdominant communities in areas invaded by Larrea were less stable (more variable in time) compared to species rich communities in grass-dominated vegetation. Compositional stability increased as cover of Bouteloua increased and decreased as cover of Larrea increased. SIGNIFICANCE: Changes in community stability due to altered interspecific interactions may be one mechanism by which biodiversity declines in grasslands following shrub invasion. As global warming increases, shrub encroachment into native grasslands worldwide will continue to alter species interactions and community stability both of which may lead to a decline in biodiversity.


Assuntos
Larrea/fisiologia , Análise de Variância , Larrea/crescimento & desenvolvimento , Modelos Lineares , Especificidade da Espécie
17.
Ecology ; 87(11): 2746-54, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17168019

RESUMO

We conducted a long-term rodent exclosure experiment in native grass- and shrub-dominated vegetation to evaluate the importance of top-down and bottom-up controls on plant community structure in a low-productivity aridland ecosystem. Using multiple regressions and analysis of covariance, we assessed how bottom-up precipitation pulses cascade through vegetation to affect rodent populations, how rodent populations affect plant community structure, and how rodents alter rates of plant community change over time. Our findings showed that bottom-up pulses cascade through the system, increasing the abundances of plants and rodents, and that rodents exerted no control on plant community structure and rate of change in grass-dominated vegetation, and only limited control in shrub-dominated vegetation. These results were discussed in the context of top-down effects on plant communities across broad gradients of primary productivity. We conclude that bottom-up regulation maintains this ecosystem in a state of low primary productivity that constrains the abundance of consumers such that they exert limited influence on plant community structure and dynamics.


Assuntos
Clima Desértico , Ecossistema , Poaceae/fisiologia , Roedores/fisiologia , Zygophyllaceae/fisiologia , Animais , Biodiversidade , Camundongos , Análise Multivariada , New Mexico , Densidade Demográfica , Chuva , Ratos , Análise de Regressão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...