Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 258-259: 153333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581559

RESUMO

Zygotic and somatic embryogenesis in plants is a fascinating event that is finely regulated through the expression of a specific group of genes and dynamic levels of plant hormones whose concerted action determines the fate that specific cells follow towards zygotic or somatic embryo development. This work studied different stages of Capsicum chinense Jacq. zygotic and somatic embryogenesis. HPLC quantification determined that the levels of indole-3-acetic acid (IAA) increase as the zygotic or somatic embryogenesis progresses, being higher at maturity, thus supporting a positive correlation between embryo cell differentiation and IAA increase. A monoclonal anti-IAA-antibody was used to detect IAA levels. Findings revealed a dynamic pattern of auxin distribution along the different embryogenic embryonic stages. In the early stages of zygotic embryos, the IAA gradient was observed in the basal cells of the suspensor and the hypostases, suggesting that they are the initial source of the IAA hormone. As embryogenesis proceeds, the dynamic of the IAA gradient is displaced to the embryo and endosperm cells. In the case of induced somatic embryogenesis, the IAA gradient was detected in the dividing cells of the endodermis, from where pre-embryogenic cells emerge. However, the analysis of somatic embryos revealed that IAA was homogeneously distributed. This study shows evidence supporting a correlation between IAA levels during zygotic or somatic embryogenesis in Capsicum chinense species.


Assuntos
Capsicum/embriologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/embriologia , Zigoto/crescimento & desenvolvimento
2.
Plant Signal Behav ; 14(2): 1559577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30582408

RESUMO

Microspore embryogenesis is a powerful biotechnological tool that is very useful in crop breeding for the rapid production of haploid and double-haploid embryos and plants. In this in vitro system, the haploid microspore is reprogrammed by the application of specific stress treatments. A high level of cell death after the stress is a major factor that greatly reduces embryogenesis yield at its initial stages. Autophagy is a degradation pathway that is present in all eukaryotes and plays key roles in a range of processes, including stress responses. Many proteases participate in autophagy and cell death; among them, cathepsins are the most abundant enzymes with a role in plant senescence and programmed cell death (PCD). Moreover, although plant genomes do not contain homologues of caspases, caspase 3-like activity (main executioner protease of animal cell death) has been detected in many plant PCD processes. Recent studies by our group in barley microspore cultures reported that the stress treatment required for inducing microspore embryogenesis (cold treatment), also produced reactive oxygen species (ROS) and cell death, concomitantly with the induction of autophagy, as well as cathepsin-like and caspase 3-like proteolytic activities. In the present study, we report new data on microspore embryogenesis of rapeseed that indicate, as in barley, activation of cell death and autophagy processes after the inductive stress. The results revealed that treatments modulating autophagy and proteases produced the same effect in the two plant systems, regardless of the stress applied, cold in barley or heat in rapeseed. Pharmacological treatments with small bioactive compounds that inhibit ROS, autophagy and specific cell death-proteases led to reduced cell death and an increased embryogenesis initiation rate in both, barley and rapeseed. Taken together, these findings open up new intervention pathways by modulating autophagy and proteases, which are very promising in terms of increasing the efficiency of in vitro microspore embryogenesis systems for biotechnological applications in crop breeding.


Assuntos
Brassica napus/metabolismo , Brassica rapa/metabolismo , Hordeum/metabolismo , Brassica napus/fisiologia , Brassica rapa/fisiologia , Morte Celular/genética , Morte Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia
3.
J Plant Physiol ; 230: 1-12, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30134217

RESUMO

Ovule and seed development in plants has long fascinated the scientific community given the complex cell coordination implicated in these processes. These cell events are highly conserved but are not necessarily representative of all plants. In this study, with the aim of obtaining information regarding the cellular patterns that follow the usual development of the ovule and the zygotic embryo, we carried out an integral anatomical study of the Capsicum chinense Jacq., floral buds and seeds at various days during maturation. This study allowed us to identify the main histo-morphological stages accompanying the transition of somatic cells into the macrospore, female gamete, and the zygotic embryogenesis. This knowledge is fundamental for future biotechnological research focused on solving the morphological recalcitrance observed during the in vitro induction of somatic or microspore embryogenesis in Capsicum. For the first time in C. chinense, we have described the hypostases, a putative source of plant growth regulators, and "the corrosion cavity", a space around the embryo. Additionally, the cell wall pectin-esterification status was investigated by immunohistology. At early stages of morphogenesis, the pectin is highly methyl-esterified; however, methyl-esterification decreases gradually throughout the process. A comparison of the results obtained here, together with the histo- and immunological changes occurring during the somatic and microspore embryogenesis, should help to elucidate the biochemical mechanisms that trigger the morphogenic events in Capsicum spp.


Assuntos
Capsicum/crescimento & desenvolvimento , Óvulo Vegetal/crescimento & desenvolvimento , Pectinas/metabolismo , Sementes/crescimento & desenvolvimento , Capsicum/anatomia & histologia , Capsicum/metabolismo , Esterificação , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Imunofluorescência , Óvulo Vegetal/anatomia & histologia , Óvulo Vegetal/metabolismo , Sementes/anatomia & histologia , Sementes/metabolismo
4.
J Exp Bot ; 69(6): 1387-1402, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29309624

RESUMO

Microspores are reprogrammed towards embryogenesis by stress. Many microspores die after this stress, limiting the efficiency of microspore embryogenesis. Autophagy is a degradation pathway that plays critical roles in stress response and cell death. In animals, cathepsins have an integral role in autophagy by degrading autophagic material; less is known in plants. Plant cathepsins are papain-like C1A cysteine proteases involved in many physiological processes, including programmed cell death. We have analysed the involvement of autophagy in cell death, in relation to cathepsin activation, during stress-induced microspore embryogenesis in Hordeum vulgare. After stress, reactive oxygen species (ROS) and cell death increased and autophagy was activated, including HvATG5 and HvATG6 up-regulation and increase of ATG5, ATG8, and autophagosomes. Concomitantly, cathepsin L/F-, B-, and H-like activities were induced, cathepsin-like genes HvPap-1 and HvPap-6 were up-regulated, and HvPap-1, HvPap-6, and HvPap-19 proteins increased and localized in the cytoplasm, resembling autophagy structures. Inhibitors of autophagy and cysteine proteases reduced cell death and promoted embryogenesis. The findings reveal a role for autophagy in stress-induced cell death during microspore embryogenesis, and the participation of cathepsins. Similar patterns of activation, expression, and localization suggest a possible connection between cathepsins and autophagy. The results open up new possibilities to enhance microspore embryogenesis efficiency with autophagy and/or cysteine protease modulators.


Assuntos
Autofagia , Catepsinas/metabolismo , Morte Celular , Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia , Pólen/embriologia , Hordeum/enzimologia , Estresse Fisiológico
5.
Front Plant Sci ; 9: 1915, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671070

RESUMO

Somatic embryogenesis is a reliable system for in vitro plant regeneration, with biotechnological applications in trees, but the regulating mechanisms are largely unknown. Changes in cell wall mechanics controlled by methylesterification of pectins, mediated by pectin methylesterases (PMEs) and pectin methyl esterase inhibitors (PMEIs) underlie many developmental processes. Arabinogalactan proteins (AGPs) are highly glycosylated proteins located at the surface of plasma membranes, in cell walls, and in extracellular secretions, with key roles in a range of different processes. In this study, we have investigated changes in two cell wall components, pectins and AGPs, during somatic embryogenesis in Quercus suber, a forest tree of high economic and ecologic value. At early embryogenesis stages, cells of proembryogenic masses showed high levels of esterified pectins and expression of QsPME and QsPMEI genes encoding a PME and a putative PMEI, respectively. At advanced stages, differentiating cells of heart, torpedo and cotyledonary embryos exhibited walls rich in de-esterified pectins, while QsPME gene expression and PME activity progressively increased. AGPs were detected in cell walls of proembryogenic masses and somatic embryos. QsLys-rich-AGP18, QsLys-rich-AGP17, and QsAGP16L1 gene expression increased with embryogenesis progression, as did the level of total AGPs, detected by dot blot with ß-glucosyl Yariv reagent. Immuno dot blot, immunofluorescence assays and confocal analysis using monoclonal antibodies to high- (JIM7, LM20) and low- (JIM5, LM19) methylesterified pectins, and to certain AGP epitopes (LM6, LM2) showed changes in the amount and distribution pattern of esterified/de-esterified pectins and AGP epitopes, that were associated with proliferation and differentiation and correlated with expression of the PME and AGP genes analyzed. Pharmacological treatments with catechin, an inhibitor of PME activity, and Yariv reagent, which blocks AGPs, impaired the progression of embryogenesis, with pectin de-esterification and an increase in AGP levels being necessary for embryo development. Findings indicate a role for pectins and AGPs during somatic embryogenesis of cork oak, promoting the cell wall remodeling during the process. They also provide new insights into the regulating mechanisms of somatic embryogenesis in woody species, for which information is still scarce, opening up new possibilities to improve in vitro embryo production in tree breeding.

6.
Front Plant Sci ; 8: 1161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28706533

RESUMO

Microspore embryogenesis is a process of cell reprogramming, totipotency acquisition and embryogenesis initiation, induced in vitro by stress treatments and widely used in plant breeding for rapid production of doubled-haploids, but its regulating mechanisms are still largely unknown. Increasing evidence has revealed epigenetic reprogramming during microspore embryogenesis, through DNA methylation, but less is known about the involvement of histone modifications. In this study, we have analyzed the dynamics and possible role of histone H3K9 methylation, a major repressive modification, as well as the effects on microspore embryogenesis initiation of BIX-01294, an inhibitor of histone methylation, tested for the first time in plants, in Brassica napus and Hordeum vulgare. Results revealed that microspore reprogramming and initiation of embryogenesis involved a low level of H3K9 methylation. With the progression of embryogenesis, methylation of H3K9 increased, correlating with gene expression profiles of BnHKMT SUVR4-like and BnLSD1-like (writer and eraser enzymes of H3K9me2). At early stages, BIX-01294 promoted cell reprogramming, totipotency and embryogenesis induction, while diminishing bulk H3K9 methylation. DNA methylation was also reduced by short-term BIX-01294 treatment. By contrast, long BIX-01294 treatments hindered embryogenesis progression, indicating that H3K9 methylation is required for embryo differentiation. These findings open up new possibilities to enhance microspore embryogenesis efficiency in recalcitrant species through pharmacological modulation of histone methylation by using BIX-01294.

7.
J Plant Physiol ; 213: 42-54, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28315794

RESUMO

Somatic embryogenesis is considered a convenient tool for investigating the regulating mechanisms of embryo formation; it is also a feasible system for in vitro regeneration procedures, with many advantages in woody species. Nevertheless, trees have shown recalcitrance to somatic embryogenesis, and its efficiency remains very low in many cases. Consequently, despite the clear potential of somatic embryogenesis in tree breeding programs, its application is limited since factors responsible for embryogenesis initiation have not yet been completely elucidated. In the present work, we investigated key cellular factors involved in the change of developmental program during leaf somatic embryogenesis initiation of white oak (Quercus alba), aiming to identify early markers of the process. The results revealed that pectin esterification, auxin accumulation and DNA demethylation were induced during embryogenesis initiation and differentially found in embryogenic cells, while they were not present in leaf cells before induction or in non-embryogenic cells after embryogenesis initiation. These three factors constitute early markers of leaf embryogenesis and represent processes that could be interconnected and involved in the regulation of cell reprogramming and embryogenesis initiation. These findings provide new insights into the mechanisms underlying plant cell reprogramming, totipotency and embryogenic competence acquisition, especially in tree species for which information is scarce, thus opening up the possibility of efficient manipulation of somatic embryogenesis induction.


Assuntos
Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Folhas de Planta/embriologia , Folhas de Planta/metabolismo , Quercus/embriologia , Quercus/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Desmetilação , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Quercus/genética
8.
Front Plant Sci ; 6: 413, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26124764

RESUMO

Microspore embryogenesis is a method of achieving complete homozygosity from plants. It is particularly useful for woody species, like Citrus, characterized by long juvenility, a high degree of heterozygosity and often self-incompatibility. Anther culture is currently the method of choice for microspore embryogenesis in many crops. However, isolated microspore culture is a better way to investigate the processes at the cellular, physiological, biochemical, and molecular levels as it avoids the influence of somatic anther tissue. To exploit the potential of this technique, it is important to separate the key factors affecting the process and, among them, culture medium composition and particularly the plant growth regulators and their concentration, as they can greatly enhance regeneration efficiency. To our knowledge, the ability of meta-Topolin, a naturally occurring aromatic cytokinin, to induce gametic embryogenesis in isolated microspores of Citrus has never been investigated. In this study, the effect of two concentrations of meta-Topolin instead of benzyladenine or zeatin in the culture medium was investigated in isolated microspore culture of two genotypes of Citrus. After 11 months of isolated microspore culture, for both genotypes and for all the four tested media, the microspore reprogramming and their sporophytic development was observed by the presence of multinucleated calli and microspore-derived embryos at different stages. Microsatellite analysis of parental and embryo samples was performed to determine the embryo alleles constitution of early embryos produced in all tested media, confirming their origin from microspores. To our knowledge, this is the first successful report of Citrus microspore embryogenesis with isolated microspore culture in Citrus, and in particular in Citrus clementina Hort. ex Tan, cvs. 'Monreal Rosso' and 'Nules.'

9.
BMC Plant Biol ; 12: 127, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22857779

RESUMO

BACKGROUND: Microspore embryogenesis represents a unique system of single cell reprogramming in plants wherein a highly specialized cell, the microspore, by specific stress treatment, switches its fate towards an embryogenesis pathway. In Brassica napus, a model species for this phenomenon, incubation of isolated microspores at 32°C is considered to be a pre-requisite for embryogenesis induction. RESULTS: We have developed a new in vitro system at lower temperature (18°C) to efficiently induce microspore embryogenesis throughout two different developmental pathways: one involving the formation of suspensor-like structures (52.4%) and another producing multicellular embryos without suspensor (13.1%); additionally, a small proportion of non-responsive microspores followed a gametophytic-like development (34.4%) leading to mature pollen. The suspensor-like pathway followed at 18°C involved the establishment of asymmetric identities from the first microspore division and an early polarity leading to different cell fates, suspensor and embryo development, which were formed by cells with different organizations and endogenous auxin distribution, similar to zygotic embryogenesis. In addition, a new strategy for germination of microspore derived embryos was developed for achieving more than 90% conversion of embryos to plantlets, with a predominance of spontaneous doubled haploids plants. CONCLUSION: The present work reveals a novel mechanism for efficient microspore embryogenesis induction in B. napus using continuous low temperature treatment. Results indicated that low temperature applied for longer periods favours an embryogenesis pathway whose first division originates asymmetric cell identities, early polarity establishment and the formation of suspensor-like structures, mimicking zygotic embryogenesis. This new in vitro system provides a convenient tool to analyze in situ the mechanisms underlying different developmental pathways during the microspore reprogramming, breaking or not the cellular symmetry, the establishment of polarity and the developmental embryo patterning, which further produce mature embryos and plants.


Assuntos
Brassica napus/embriologia , Temperatura Baixa , Ácidos Indolacéticos/metabolismo , Pólen/embriologia , Brassica napus/citologia , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , DNA de Plantas/análise , Dessecação , Diploide , Germinação , Haploidia , Pólen/citologia , Pólen/genética , Pólen/crescimento & desenvolvimento
10.
J Exp Bot ; 63(5): 2007-24, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22197894

RESUMO

Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores.


Assuntos
Caspases/metabolismo , Hordeum/fisiologia , Óxido Nítrico/metabolismo , Pólen/embriologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Cruzamento , Técnicas de Cultura de Células , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/fisiologia , Haploidia , Hordeum/metabolismo , Hordeum/ultraestrutura , Óxido Nítrico/farmacologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Transdução de Sinais/fisiologia
11.
Plant Cell Physiol ; 52(4): 597-609, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21330298

RESUMO

Zea mays and Arabidopsis thaliana Brittle 1 (ZmBT1 and AtBT1, respectively) are members of the mitochondrial carrier family. Although they are presumed to be exclusively localized in the envelope membranes of plastids, confocal fluorescence microscopy analyses of potato, Arabidopsis and maize plants stably expressing green fluorescent protein (GFP) fusions of ZmBT1 and AtBT1 revealed that the two proteins have dual localization to plastids and mitochondria. The patterns of GFP fluorescence distribution observed in plants stably expressing GFP fusions of ZmBT1 and AtBT1 N-terminal extensions were fully congruent with that of plants expressing a plastidial marker fused to GFP. Furthermore, the patterns of GFP fluorescence distribution and motility observed in plants expressing the mature proteins fused to GFP were identical to those observed in plants expressing a mitochondrial marker fused to GFP. Electron microscopic immunocytochemical analyses of maize endosperms using anti-ZmBT1 antibodies further confirmed that ZmBT1 occurs in both plastids and mitochondria. The overall data showed that (i) ZmBT1 and AtBT1 are dually targeted to mitochondria and plastids; (ii) AtBT1 and ZmBT1 N-terminal extensions comprise targeting sequences exclusively recognized by the plastidial compartment; and (iii) targeting sequences to mitochondria are localized within the mature part of the BT1 proteins.


Assuntos
Arabidopsis/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Plastídeos/metabolismo , Solanum tuberosum/metabolismo , Zea mays/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/ultraestrutura , Transporte Biológico , Endosperma/metabolismo , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Microscopia Imunoeletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/imunologia , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/ultraestrutura , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/ultraestrutura , Zea mays/genética , Zea mays/ultraestrutura
12.
Plant Signal Behav ; 5(4): 341-5, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20383055

RESUMO

Plant cell wall polymers are regulated during development, but the specific roles of their different molecular components and the functional meaning of cell wall changes in different cell types and cell processes are still unclear. In the present work the presence and distribution of different cell wall components in Capsicum annuum L. pollen have been analyzed in situ in order to monitor how they change during two developmental programs. These programs are: pollen development, which is a differentiation process, and stress-induced pollen reprogramming to embryogenesis, which involves proliferation followed later by differentiation processes. Specific antibodies recognizing the major cell wall polymers, the major hemicellulose, xyloglucan (XG), the rhamnogalacturonan II (RGII) pectin domain and high- and low-methyl-esterified pectins were used for both dot-blot and immunolocalization assays at light and electron microscopy levels during defined developmental stages. For comparison purposes, a similar approach was also used in zygotic embryogenesis and root apical tip growth. Results showed differences in the distribution pattern of these molecular complexes, in the proportion of esterified and de-esterified pectins in the two pollen developmental pathways, and defined wall changes during microspore reprogramming. These changes were associated with proliferation and differentiation events where highly esterified pectins were characteristic of proliferation, while de-esterified pectins, XG and RGII were abundant in walls of differentiating cells. Starch deposits were also studied and the results revealed changes in starch synthesis dynamics after switching the pollen embryogenic developmental program. These changes occurred together with modifications in the distribution patterns of cell wall polymers, starch accumulation being associated with cell differentiation. As in the case of proliferating cells, esterified pectins were also abundant in the apertures of developing microspores, regions of new cell wall formation. The different distribution patterns of cell wall polymers were common for proliferating cells and differentiating cells in all the plant systems analyzed, including zygotic embryos and root tip cells, suggesting that these patterns are markers of proliferation and differentiation events as well as markers of pollen reprogramming to embryogenesis.


Assuntos
Capsicum/embriologia , Diferenciação Celular , Proliferação de Células , Parede Celular/metabolismo , Pólen/metabolismo , Amido/metabolismo , Capsicum/citologia , Capsicum/metabolismo , Pectinas/metabolismo
13.
J Exp Bot ; 61(4): 1159-75, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20097842

RESUMO

Plant cell walls and their polymers are regulated during plant development, but the specific roles of their molecular components are still unclear, as well as the functional meaning of wall changes in different cell types and processes. In this work the in situ analysis of the distribution of different cell wall components was performed during two developmental programmes, gametophytic pollen development, which is a differentiation process, and stress-induced pollen embryogenesis, which involves proliferation followed by differentiation processes. The changes in cell wall polymers were compared with a system of plant cell proliferation and differentiation, the root apical meristem. The analysis was also carried out during the first stages of zygotic embryogenesis. Specific antibodies recognizing the major cell wall polymers, xyloglucan (XG) and the rhamnogalacturonan II (RGII) pectin domain, and antibodies against high- and low-methyl-esterified pectins were used for both dot-blot and immunolocalization with light and electron microscopy. The results showed differences in the distribution pattern of these molecular complexes, as well as in the proportion of esterified and non-esterified pectins in the two pollen developmental pathways. Highly esterified pectins were characteristics of proliferation, whereas high levels of the non-esterified pectins, XG and RGII were abundant in walls of differentiating cells. Distribution patterns similar to those of pollen embryos were found in zygotic embryos. The wall changes reported are characteristic of proliferation and differentiation events as markers of these processes that take place during pollen development and embryogenesis.


Assuntos
Capsicum/embriologia , Capsicum/metabolismo , Diferenciação Celular , Proliferação de Células , Parede Celular/metabolismo , Pectinas/metabolismo , Pólen/citologia , Capsicum/citologia , Capsicum/genética , Parede Celular/genética , Esterificação , Pólen/embriologia , Pólen/genética , Pólen/metabolismo
14.
Biol Cell ; 97(9): 709-22, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15910280

RESUMO

Background information. In vitro-cultured microspores, after an appropriate stress treatment, can switch towards an embryogenic pathway. This process, known as microspore embryogenesis, is an important tool in plant breeding. Basic studies on this process in economically interesting crops, especially in recalcitrant plants, are very limited and the sequence of events is poorly understood. In situ studies are very convenient for an appropriate dissection of microspore embryogenesis, a process in which a mixture of different cell populations (induced and non-induced) develop asynchronically.Results. In the present study, the occurrence of defined subcellular rearrangements has been investigated during early microspore embryogenesis in pepper, an horticultural crop of agronomic interest, in relation to proliferation and differentiation events. Haploid plants of Capsicum annuum L. (var. Yolo Wonder B) have been regenerated from in vitro anther cultures by a heat treatment at 35 degrees C for 8 days. Morphogenesis of microspore-derived embryos has been analysed, at both light and electron microscopy levels, using low-temperature-processed, well-preserved specimens. The comparison with the normal gametophytic development revealed changes in cell organization after embryogenesis induction, and permitted the characterization of the time sequence of a set of structural events, not previously defined in pepper, related to the activation of proliferative activity and differentiation. These changes mainly affected the plastids, the vacuolar compartment, the cell wall and the nucleus. Further differentiation processes mimicked that of the zygotic development.Conclusions. The reported changes can be considered as markers of the microspore embryogenesis. They have increased the understanding of the mechanisms controlling the switch and progression of the microspore embryogenesis, which could help to improve its efficiency and to direct strategies, especially in agronomically interesting crops.


Assuntos
Capsicum/citologia , Capsicum/embriologia , Desenvolvimento Embrionário/fisiologia , Pólen/embriologia , Capsicum/fisiologia , Citometria de Fluxo , Haploidia , Pólen/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...