Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(49): e202314211, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37797248

RESUMO

The functionalization of π-conjugated scaffolds with sterically demanding substituents is a widely used tactic to suppress cofacial (H-type) stacking interactions, which may even inhibit self-assembly. Contrary to expectations, we demonstrate herein that increasing steric effects can result in an enhanced thermodynamic stability of H-type supramolecular polymers. In our approach, we have investigated two boron dipyrromethene (BODIPY) dyes with bulky phenyl (2) and mesityl (3) meso-substituents and compared their self-assembly in nonpolar media with that of a parent meso-methyl BODIPY 1 lacking bulky groups. While the enhanced steric demand induces pathway complexity, the superior thermodynamic stability of the H-type pathways can be rationalized in terms of additional enthalpic gain arising from intermolecular C-H⋅⋅⋅F-B interactions of the orthogonally arranged aromatic substituents, which overrule their inherent steric demand. Our findings underline the importance of balancing competing non-covalent interactions in self-assembly.

2.
Chem Commun (Camb) ; 59(58): 8937-8940, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37365975

RESUMO

Herein, we show that a straightforward desymmetrisation of a bolaamphiphilic chromophore can tune aromatic interactions and exciton coupling upon self-assembly. As a result, multiple assembled states become accesible offering a facile approach to induce pathway complexity in aqueous media.

3.
J Am Chem Soc ; 145(16): 8882-8895, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053499

RESUMO

Solute-solvent interactions play a critical role in multiple fields, including biology, materials science, and (physical) organic, polymer, and supramolecular chemistry. Within the growing field of supramolecular polymer science, these interactions have been recognized as an important driving force for (entropically driven) intermolecular association, particularly in aqueous media. However, to date, solute-solvent effects remain poorly understood in the context of complex self-assembly energy landscapes and pathway complexity. Herein, we unravel the role of solute-solvent interactions in controlling chain conformation effects, allowing energy landscape modulation and pathway selection in aqueous supramolecular polymerization. To this end, we have designed a series of oligo(phenylene ethynylene) (OPE)-based bolaamphiphilic Pt(II) complexes OPE2-4 bearing solubilizing triethylene glycol (TEG) chains of equal length on both molecule ends, but a different size of the hydrophobic aromatic scaffold. Strikingly, detailed self-assembly studies in aqueous media disclose a different tendency of the TEG chains to fold back and enwrap the hydrophobic molecular component depending on both the size of the core and the volume fraction of the co-solvent (THF). The relatively small hydrophobic component of OPE2 can be readily shielded by the TEG chains, leading to only one aggregation pathway. In contrast, the decreased capability of the TEG chains to effectively shield larger hydrophobic cores (OPE3 and OPE4) enables different types of solvent quality-dependent conformations (extended, partly back-folded and back-folded), which in turn induce various controllable aggregation pathways with distinct morphologies and mechanisms. Our results shed light on previously underappreciated solvent-dependent chain conformation effects and their role in governing pathway complexity in aqueous media.

4.
Nat Commun ; 14(1): 1084, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841784

RESUMO

Crowding effects are crucial to maintaining functionality in biological systems, but little is known about their role in analogous artificial counterparts. Within the growing field of supramolecular polymer science, crowding effects have hitherto remained underappreciated. Herein, we show that crowding effects exhibit strong and distinct control over the kinetics, accessible pathways and final outcomes of supramolecular polymerisation processes. In the presence of a pre-formed supramolecular polymer as crowding agent, a model supramolecular polymer dramatically changes its self-assembly behaviour and undergoes a morphological transformation from bundled fibres into flower-like hierarchical assemblies, despite no co-assembly taking place. Notably, this new pathway can only be accessed in crowded environments and when the crowding agent exhibits a one-dimensional morphology. These results allow accessing diverse morphologies and properties in supramolecular polymers and pave the way towards a better understanding of high-precision self-assembly in nature.

5.
J Am Chem Soc ; 144(49): 22479-22492, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36459436

RESUMO

We report the thermodynamic and kinetic aqueous self-assembly of a series of amide-functionalized dithienyldiketopyrrolopyrroles (TDPPs) that bear various hydrophilic oligoethylene glycol (OEG) and hydrophobic alkyl chains. Spectroscopic and microscopic studies showed that the TDPP-based amphiphiles with an octyl group form sheet-like aggregates with J-type exciton coupling. The effect of the alkyl chains on the aggregated structure and the internal molecular orientation was examined via computational studies combining MD simulations and TD-DFT calculations. Furthermore, solvent and thermal denaturation experiments provided a state diagram that indicates the formation of unexpected nanoparticles during the self-assembly into nanosheets when longer OEG side chains are introduced. A kinetic analysis revealed that the nanoparticles were obtained selectively as an on-pathway intermediate state toward the formation of thermodynamically controlled nanosheets. The metastable aggregates were used for seed-initiated supramolecular assembly, which allowed establishing control over the assembly kinetics and the aggregate size. The sheet-like aggregates prepared using the seeding method exhibited coherent vibration in the excited state, indicating a well-ordered orientation of the TDPP units. These results underline the significance of fine tuning of the hydrophobic/hydrophilic balance in the molecular design to kinetically control the assembly of amphiphilic π-conjugated molecules into two-dimensional nanostructures in aqueous media.


Assuntos
Corantes , Água , Cinética , Interações Hidrofóbicas e Hidrofílicas , Água/química
6.
Angew Chem Int Ed Engl ; 61(47): e202213345, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36178740

RESUMO

Hydrogen-bonded squaramide (SQ) supramolecular polymers exhibit uncommon thermoreversible polymorph transitions between particle- and fiber-like nanostructures. SQs 1-3, with different steric bulk, self-assemble in solution into particles (AggI) upon cooling to 298 K, and SQs 1 and 2, with only one dendronic group, show a reversible transformation into fibers (AggII) by further decreasing the temperature to 288 K. Nano-DSC and UV/Vis studies on SQ 1 reveal a concentration-dependent transition temperature and ΔH for the AggI-to-AggII conversion, while the kinetic studies on SQ 2 indicate the on-pathway nature of the polymorph transition. Spectroscopic and theoretical studies reveal that these transitions are triggered by the molecular reorganization of the SQ units changing from slipped to head-to-tail hydrogen bonding patterns. This work unveils the thermodynamic and kinetic aspects of reversible polymorph transitions that are of interest to develop stimuli-responsive systems.


Assuntos
Hidrogênio , Polímeros , Ligação de Hidrogênio , Polímeros/química , Cinética
7.
Angew Chem Int Ed Engl ; 61(26): e202203783, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35362184

RESUMO

We reveal unique hydrogen (H-) bonding patterns and exploit them to control the kinetics, pathways and length of supramolecular polymers (SPs). New bisamide-containing monomers were designed to elucidate the role of competing intra- vs. intermolecular H-bonding interactions on the kinetics of supramolecular polymerization (SP). Remarkably, two polymerization-inactive metastable states were discovered. Contrary to previous examples, the commonly assumed intramolecularly H-bonded monomer does not evolve into intermolecularly H-bonded SPs via ring opening, but rather forms a metastable dimer. In this dimer, all H-bonding sites are saturated, either intra- or intermolecularly, hampering elongation. The dimers exhibit an advantageous preorganization, which upon opening of the intramolecular portion of the H-bonding motif facilitates SP in a consecutive process. The retardation of spontaneous self-assembly as a result of two metastable states enables length control in SP by seed-mediated growth.

8.
Angew Chem Int Ed Engl ; 61(17): e202200390, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35112463

RESUMO

Herein, we present a strategy to enable a maintained emissive behavior in the self-assembled state by enforcing an anti-cooperative self-assembly involving weak intermolecular dye interactions. To achieve this goal, we designed a conformationally flexible monomer unit 1 with a central 1,3-substituted (diphenyl)urea hydrogen bonding synthon that is tethered to two BODIPY dyes featuring sterically bulky trialkoxybenzene substituents at the meso-position. The competition between attractive forces (H-bonding and aromatic interactions) and destabilizing effects (steric and competing conformational effects) limits the assembly, halting the supramolecular growth at the stage of small oligomers. Given the presence of weak dye-dye interactions, the emission properties of molecularly dissolved 1 are negligibly affected upon aggregation. Our findings contribute to broadening the scope of emissive supramolecular assemblies and controlled supramolecular polymerization.


Assuntos
Ligação de Hidrogênio , Conformação Molecular , Polimerização
9.
Chem Sci ; 12(37): 12248-12265, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34603655

RESUMO

The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.

10.
Org Chem Front ; 8(15): 4138-4143, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34354839

RESUMO

Achieving precise control over the morphology, dimensions and processability of functional materials is a key but challenging requirement for the fabrication of smart devices. To address this issue, we herein compare the self-assembly behavior of two new Pt(ii) complexes that differ in the molecular and coordination geometry through implementation of either a monodentate (pyridine) or bidentate (bipyridine) ligand. The molecular preorganization of the bipyridine-based complex enables effective self-assembly in solution involving Pt⋯Pt interactions, while preserving aggregate solubility. On the other hand, increased steric effects of the linear bispyridine-based complex hinder an effective preorganization leading to poorly solvated aggregates when a critical concentration is exceeded.

11.
Chem Sci ; 12(14): 5236-5245, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34168776

RESUMO

Herein, we exploit coordination geometry as a new tool to regulate the non-covalent interactions, photophysical properties and energy landscape of supramolecular polymers. To this end, we have designed two self-assembled Pt(ii) complexes 1 and 2 that feature an identical aromatic surface, but differ in the coordination and molecular geometry (linear vs. V-shaped) as a result of judicious ligand choice (monodentate pyridine vs. bidentate bipyridine). Even though both complexes form cooperative supramolecular polymers in methylcyclohexane, their supramolecular and photophysical behaviour differ significantly: while the high preorganization of the bipyridine-based complex 1 enables an H-type 1D stacking with short Pt⋯Pt contacts via a two-step consecutive process, the existence of increased steric effects for the pyridyl-based derivative 2 hinders the formation of metal-metal contacts and induces a single aggregation process into large bundles of fibers. Ultimately, this fine control of Pt⋯Pt distances leads to tuneable luminescence-red for 1 vs. blue for 2, which highlights the relevance of coordination geometry for the development of functional supramolecular materials.

12.
J Am Chem Soc ; 143(18): 7164-7175, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913728

RESUMO

Halogens play a crucial role in numerous natural processes and synthetic materials due to their unique physicochemical properties and the diverse interactions they can engage in. In the field of supramolecular polymerization, however, halogen effects remain poorly understood, and investigations have been restricted to halogen bonding or the inclusion of polyfluorinated side groups. Recent contributions from our group have revealed that chlorine ligands greatly influence molecular packing and pathway complexity phenomena of various metal complexes. These results prompted us to explore the role of the halogen nature on supramolecular polymerization, a phenomenon that has remained unexplored to date. To address this issue, we have designed a series of archetypal bispyridyldihalogen PtII complexes bearing chlorine (1), bromine (2), or iodine (3) and systematically compared their supramolecular polymerization in nonpolar media using various experimental methods and theory. Our studies reveal a remarkably different supramolecular polymerization for the three compounds, which can undergo two competing pathways with either slipped (kinetic) or parallel (thermodynamic) molecular packing. The halogen exerts an inverse effect on the energetic levels of the two self-assembled states, resulting in a single thermodynamic pathway for 3, a transient kinetic species for 2, and a hidden thermodynamic state for 1. This seesaw-like bias of the energy landscape can be traced back to the involvement of the halogens in weak N-H···X hydrogen-bonding interactions in the kinetic pathway, whereas in the thermodynamic pathway the halogens are not engaged in the stabilizing interaction motif but rather amplify solvophobic effects.

13.
Chemistry ; 27(14): 4617-4626, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33350532

RESUMO

Understanding the relationship between molecular design and packing modes constitutes one of the major challenges in self-assembly and is essential for the preparation of functional materials. Herein, we have achieved high precision control over the supramolecular packing of amphiphilic PtII complexes by systematic variation of the hydrophilic side-chain length. A novel approach of general applicability based on complementary X-ray diffraction and solid-state NMR spectroscopy has allowed us to establish a clear correlation between molecular features and supramolecular ordering. Systematically increasing the side-chain length gradually increases the steric demand and reduces the extent of aromatic interactions, thereby inducing a gradual shift in the molecular packing from parallel to a long-slipped organization. Notably, our findings highlight the necessity of advanced solid-state NMR techniques to gain structural information for supramolecular systems where single-crystal growth is not possible. Our work further demonstrates a new molecular design strategy to modulate aromatic interaction strengths and packing arrangements that could be useful for the engineering of functional materials based on PtII and aromatic molecules.

14.
Chem Commun (Camb) ; 56(89): 13808-13811, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33078772

RESUMO

Herein, we introduce the concept of hydrophobic domain flexibility to control the morphology of aqueous assemblies. To this end, we examined two amphiphilic 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes that differ in the flexibility of the hydrophobic residue (tetradecyl vs. cholesterol). This minor structural difference significantly affects the self-assembly behaviour (spherical vs. two-dimensional sheets) by overruling the packing parameters.

15.
Soft Matter ; 16(29): 6834-6840, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633744

RESUMO

Controlling the supramolecular self-assembly of π-conjugated systems into defined morphologies is a prerequisite for the preparation of functional materials. In recent years, the development of sophisticated sample preparation protocols and modulation of various experimental conditions (solvent, concentration, temperature, etc.) have enabled precise control over aggregation pathways of different types of monomer units. A common method to achieve pathway control consists in the combination of two miscible solvents in defined proportions - a "poor" and "good" solvent. However, the role of solvents of opposed polarity in the self-assembly of a given building block still remains an open question. Herein, we unravel the effect of aggregation-inducing solvent systems of opposed polarity (aqueous vs. non-polar media) on the supramolecular assembly of a new bolaamphiphilic Pt(ii) complex. A number of experimental methods show a comparable molecular packing in both media driven by a synergy of solvophobic, aromatic and weak hydrogen-bonding interactions. However, morphological analysis of the respective aggregates in aqueous and non-polar media reveals a restricted aggregate growth in aqueous media into spherical nanoparticles and a non-restricted 2D-nanosheet formation in non-polar media. These findings are attributed to a considerably more efficient solvation and, in turn, increased steric demand of the hydrophilic chains in aqueous media than in nonpolar media, which can be explained by the entrapment of water molecules in the hydrophilic aggregate shell via hydrogen bonds. Our findings reveal that the different solvation of peripheral solubilizing groups in solvents of opposed polarity is an efficient method for morphology control in self-assembly.

16.
Angew Chem Int Ed Engl ; 58(44): 15626-15630, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31351026

RESUMO

We exploited the inherent geometrical isomerism of a PtII complex as a new tool to control supramolecular assembly processes. UV irradiation and careful selection of solvent, temperature, and concentration leads to tunable coordination isomerism, which in turn allows fully reversible switching between two distinct aggregate species (1D fibers↔2D lamellae) with different photoresponsive behavior. Our findings not only broaden the scope of coordination isomerism, but also open up exciting possibilities for the development of novel stimuli-responsive nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...