Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(1): 98-115, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041395

RESUMO

Bacterial cell division requires the coordinated assembly and disassembly of a large protein complex called the divisome; however, the exact role of molecular chaperones in this critical process remains unclear. We here provide genetic evidence that ClpX unfoldase activity is a determinant for proper coordination of bacterial cell division by showing the growth defect of a Staphylococcus aureus clpX mutant is rescued by a spontaneously acquired G325V substitution in the ATP-binding domain of the essential FtsA cell division protein. The polymerization state of FtsA is thought to control initiation of bacterial septum synthesis and, while restoring the aberrant FtsA dynamics in clpX cells, the FtsAG325V variant displayed reduced ability to interact with itself and other cell division proteins. In wild-type cells, the ftsAG325V allele shared phenotypes with Escherichia coli superfission ftsA mutants and accelerated the cell cycle, increased the risk of daughter cell lysis, and conferred sensitivity to heat and antibiotics inhibiting cell wall synthesis. Strikingly, lethality was mitigated by spontaneous mutations that inactivate ClpX. Taken together, our results suggest that ClpX promotes septum synthesis by antagonizing FtsA interactions and illuminates the critical role of a protein unfoldase in coordinating bacterial cell division.


Assuntos
Proteínas de Escherichia coli , Infecções Estafilocócicas , Humanos , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Staphylococcus aureus/metabolismo , Divisão Celular/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
2.
Mol Cell Biochem ; 478(6): 1269-1280, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36302994

RESUMO

Protein fold stability likely plays a role in SARS-CoV-2 S-protein evolution, together with ACE2 binding and antibody evasion. While few thermodynamic stability data are available for S-protein mutants, many systematic experimental data exist for their expression. In this paper, we explore whether such expression levels relate to the thermodynamic stability of the mutants. We studied mutation-induced SARS-CoV-2 S-protein fold stability, as computed by three very distinct methods and eight different protein structures to account for method- and structure-dependencies. For all methods and structures used (24 comparisons), computed stability changes correlate significantly (99% confidence level) with experimental yeast expression from the literature, such that higher expression is associated with relatively higher fold stability. Also significant, albeit weaker, correlations were seen between stability and ACE2 binding effects. The effect of thermodynamic fold stability may be direct or a correlate of amino acid or site properties, notably the solvent exposure of the site. Correlation between computed stability and experimental expression and ACE2 binding suggests that functional properties of the SARS-CoV-2 S-protein mutant space are largely determined by a few simple features, due to underlying correlations. Our study lends promise to the development of computational tools that may ideally aid in understanding and predicting SARS-CoV-2 S-protein evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Sítios de Ligação , Ligação Proteica , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Mutação
3.
Int J Epidemiol ; 51(6): 1722-1732, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36331437

RESUMO

BACKGROUND: Excess mortality during the COVID-19 pandemic is of major scientific and political interest. METHODS: We critically reviewed different estimates of all-cause excess mortality for the five Nordic countries (Denmark, Finland, Iceland, Norway and Sweden), which have been much studied during the COVID-19 pandemic, using the latest register data to discuss uncertainties and implications. RESULTS: We show using back-calculation of expected deaths from Nordic all-cause deaths that the Institute for Health Metrics and Evaluation model is a clear outlier in the compared estimates and likely substantially overestimates excess mortality of Finland and Denmark, and probably Sweden. Our review suggests a range of total Nordic excess deaths of perhaps 15 000-20 000, but results are sensitive to assumptions in the models as shown. CONCLUSIONS: We document substantial heterogeneity and uncertainty in estimates of excess mortality. All estimates should be taken with caution in their interpretation as they miss detailed account of demographics, such as changes in the age group populations over the study period.


Assuntos
COVID-19 , Pandemias , Humanos , Países Escandinavos e Nórdicos/epidemiologia , Noruega , Islândia/epidemiologia , Finlândia/epidemiologia , Suécia , Dinamarca/epidemiologia
4.
J Chem Inf Model ; 62(14): 3391-3400, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35785970

RESUMO

As only 35% of human proteins feature (often partial) PDB structures, the protein structure prediction tool AlphaFold2 (AF2) could have massive impact on human biology and medicine fields, making independent benchmarks of interest. We studied AF2's ability to describe the backbone solvent exposure as a functionally important and easily interpretable "natural coordinate" of protein conformation, using human proteins as test case. After screening for appropriate comparative sets, we matched 1818 human proteins predicted by AF2 against 7585 unique experimental PDBs, and after curation for sequence overlap, we assessed 1264 comparative pairs comprising 115 unique AF2 structures and 652 unique experimental structures. AF2 performed markedly worse for multimers, whereas ligands, cofactors, and experimental resolution were interestingly not very important for performance. AF2 performed excellently for monomer proteins. Challenges relating to specific groups of residues and multimers were analyzed. We identified larger deviations for lower-confidence scores (pLDDT), and exposed residues and polar residues (e.g., Asp, Glu, Asn) being less accurately described than hydrophobic residues. Proline conformations were the hardest to predict, probably due to a common location in dynamic solvent-accessible parts. In summary, using solvent exposure as a metric, we quantified the performance of AF2 for human proteins and provided estimates of the expected agreement as a function of ligand presence, multimer/monomer status, local residue solvent exposure, pLDDT, and amino acid type. Overall performance was found to be excellent.


Assuntos
Furilfuramida , Proteínas , Aminoácidos/química , Humanos , Ligantes , Conformação Proteica , Proteínas/química , Solventes/química
5.
J Comput Chem ; 43(8): 504-518, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35040492

RESUMO

Accurate prediction of protein stability changes upon mutation (ΔΔG) is increasingly important to evolution studies, protein engineering, and screening of disease-causing gene variants but is challenged by biases in training data. We investigated 45 linear regression models trained on data sets that account systematically for destabilization bias and mutation-type bias BM . The models were externally validated on three test data sets probing different pathologies and for internal consistency (symmetry and neutrality). Model structure and performance substantially depended on training data and even fitting method. We developed two final models: SimBa-IB for typical natural mutations and SimBa-SYM for situations where stabilizing and destabilizing mutations occur to a similar extent. SimBa-SYM, despite is simplicity, is essentially non-biased (vs. the Ssym data set) while still performing well for all data sets (R ~ 0.46-0.54, MAE = 1.16-1.24 kcal/mol). The simple models provide advantage in terms of interpretability, use and future improvement, and are freely available on GitHub.


Assuntos
Engenharia de Proteínas , Proteínas , Mutação , Estabilidade Proteica , Proteínas/química , Proteínas/genética
6.
Front Mol Biosci ; 8: 691569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150853

RESUMO

Staphylococcus aureus is a leading cause of bacterial infections world-wide. Staphylococcal infections are preferentially treated with ß-lactam antibiotics, however, methicillin-resistant S. aureus (MRSA) strains have acquired resistance to this superior class of antibiotics. We have developed a growth-based, high-throughput screening approach that directly identifies cell wall synthesis inhibitors capable of reversing ß-lactam resistance in MRSA. The screen is based on the finding that S. aureus mutants lacking the ClpX chaperone grow very poorly at 30°C unless specific steps in teichoic acid synthesis or penicillin binding protein (PBP) activity are inhibited. This property allowed us to exploit the S. aureus clpX mutant as a unique screening tool to rapidly identify biologically active compounds that target cell wall synthesis. We tested a library of ∼50,000 small chemical compounds and searched for compounds that inhibited growth of the wild type while stimulating growth of the clpX mutant. Fifty-eight compounds met these screening criteria, and preliminary tests of 10 compounds identified seven compounds that reverse ß-lactam resistance of MRSA as expected for inhibitors of teichoic acid synthesis. The hit compounds are therefore promising candidates for further development as novel combination agents to restore ß-lactam efficacy against MRSA.

7.
Sci Rep ; 9(1): 16456, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712583

RESUMO

In all living cells, molecular chaperones are essential for facilitating folding and unfolding of proteins. ClpX is a highly conserved ATP-dependent chaperone that besides functioning as a classical chaperone can associate with ClpP to form the ClpXP protease. To investigate the relative impact of the ClpXP protease and the ClpX chaperone in cell physiology of the important pathogenic bacterium Staphylococcus aureus, we assessed the transcriptional changes induced by inactivating only ClpXP, or by completely deleting ClpX. This analysis revealed that ClpX has a profound impact on S. aureus cell physiology that is mediated primarily via ClpXP-dependent pathways. As an example, ClpX impacts expression of virulence genes entirely via ClpXP-dependent mechanisms. Furthermore, ClpX controls a high number of genes and sRNAs via pathways involving both ClpXP protease and ClpX chaperone activities; an interesting example being genes promoting excision and replication of the pathogenicity island SaPI5. Independently of ClpP, ClpX, impacts transcription of only a restricted number of genes involved in peptidoglycan synthesis, cell division, and type seven secretion. Finally, we demonstrate that ClpX localizes in single foci in close proximity to the division septum lending support to the idea that ClpX plays a role in S. aureus cell division.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Regulação Bacteriana da Expressão Gênica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Virulência , Proteínas de Bactérias/genética , Genoma Bacteriano , Ilhas Genômicas , Humanos , Peptidoglicano/metabolismo , Staphylococcus aureus/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
PLoS Pathog ; 15(9): e1008044, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31518377

RESUMO

ß-lactam antibiotics interfere with cross-linking of the bacterial cell wall, but the killing mechanism of this important class of antibiotics is not fully understood. Serendipitously we found that sub-lethal doses of ß-lactams rescue growth and prevent spontaneous lysis of Staphylococcus aureus mutants lacking the widely conserved chaperone ClpX, and we reasoned that a better understanding of the clpX phenotypes could provide novel insights into the downstream effects of ß-lactam binding to the PBP targets. Super-resolution imaging revealed that clpX cells display aberrant septum synthesis, and initiate daughter cell separation prior to septum completion at 30°C, but not at 37°C, demonstrating that ClpX becomes critical for coordinating the S. aureus cell cycle as the temperature decreases. FtsZ localization and dynamics were not affected in the absence of ClpX, suggesting that ClpX affects septum formation and autolytic activation downstream of Z-ring formation. Interestingly, oxacillin antagonized the septum progression defects of clpX cells and prevented lysis of prematurely splitting clpX cells. Strikingly, inhibitors of wall teichoic acid (WTA) biosynthesis that work synergistically with ß-lactams to kill MRSA synthesis also rescued growth of the clpX mutant, as did genetic inactivation of the gene encoding the septal autolysin, Sle1. Taken together, our data support a model in which Sle1 causes premature splitting and lysis of clpX daughter cells unless Sle1-dependent lysis is antagonized by ß-lactams or by inhibiting an early step in WTA biosynthesis. The finding that ß-lactams and inhibitors of WTA biosynthesis specifically prevent lysis of a mutant with dysregulated autolytic activity lends support to the idea that PBPs and WTA biosynthesis play an important role in coordinating cell division with autolytic splitting of daughter cells, and that ß-lactams do not kill S. aureus simply by weakening the cell wall.


Assuntos
Proteínas de Bactérias/fisiologia , Endopeptidase Clp/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriólise/efeitos dos fármacos , Bacteriólise/fisiologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endopeptidase Clp/genética , Humanos , Modelos Biológicos , Mutação , Oxacilina/farmacologia , Staphylococcus aureus/genética , Ácidos Teicoicos/biossíntese , Tunicamicina/farmacologia , beta-Lactamas/farmacologia
9.
mBio ; 7(4)2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27507828

RESUMO

UNLABELLED: Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. IMPORTANCE: Lipoteichoic acid is an essential component of the Staphylococcus aureus cell envelope and an attractive target for the development of vaccines and antimicrobials directed against antibiotic-resistant Gram-positive bacteria such as methicillin-resistant S. aureus and vancomycin-resistant enterococci. In this study, we showed that the lipoteichoic acid polymer is essential for growth of S. aureus only as long as the ClpX chaperone is present in the cell. Our results indicate that lipoteichoic acid and ClpX play opposite roles in a pathway that controls two key cell division processes in S. aureus, namely, septum formation and autolytic activity. The discovery of a novel functional connection in the genetic network that controls cell division in S. aureus may expand the repertoire of possible strategies to identify compounds or compound combinations that kill antibiotic-resistant S. aureus.


Assuntos
Endopeptidase Clp/deficiência , Endopeptidase Clp/metabolismo , Ligases/genética , Ligases/metabolismo , Lipopolissacarídeos/metabolismo , Viabilidade Microbiana , Staphylococcus aureus/fisiologia , Ácidos Teicoicos/metabolismo , Técnicas de Inativação de Genes , Genes Essenciais , Microscopia Eletrônica de Transmissão , Mutação , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestrutura
10.
J Bacteriol ; 198(19): 2719-31, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27432833

RESUMO

UNLABELLED: Staphylococcus aureus is capable of causing a remarkable spectrum of disease, ranging from mild skin eruptions to life-threatening infections. The survival and pathogenic potential of S. aureus depend partly on its ability to sense and respond to changes in its environment. Spx is a thiol/oxidative stress sensor that interacts with the C-terminal domain of the RNA polymerase RpoA subunit, leading to changes in gene expression that help sustain viability under various conditions. Using genetic and deep-sequencing methods, we show that spx is essential in S. aureus and that a previously reported Δspx strain harbored suppressor mutations that allowed it to grow without spx One of these mutations is a single missense mutation in rpoB (a P-to-L change at position 519 encoded by rpoB [rpoB-P519L]) that conferred high-level resistance to rifampin. This mutation alone was found to be sufficient to bypass the requirement for spx The generation of rifampin resistance libraries led to the discovery of an additional rpoB mutation, R484H, which supported strains with the spx disruption. Other rifampin resistance mutations either failed to support the Δspx mutant or were recovered at unexpectedly low frequencies in genetic transduction experiments. The amino acid residues encoded by rpoB-P519L and -R484H map in close spatial proximity and comprise a highly conserved region of RpoB. We also discovered that multicopy expression of either trxA (encoding thioredoxin) or trxB (encoding thioredoxin reductase) supports strains with the deletion of spx Our results reveal intriguing properties, especially of RNA polymerase, that compensate for the loss of an essential gene that is a key mediator of diverse processes in S. aureus, including redox and thiol homeostasis, antibiotic resistance, growth, and metabolism. IMPORTANCE: The survival and pathogenicity of S. aureus depend on complex genetic programs. An objective for combating this insidious organism entails dissecting genetic regulatory circuits and discovering promising new targets for therapeutic intervention. In this study, we discovered that Spx, an RNA polymerase-interacting stress regulator implicated in many stress responses in S. aureus, including responses to oxidative and cell wall antibiotics, is essential. We describe two mechanisms that suppress the lethality of spx disruption. One mechanism highlights how only certain rifampin resistance-encoding alleles of RpoB confer new properties on RNA polymerase, with important mechanistic implications. We describe additional stress conditions where the loss of spx is deleterious, thereby highlighting Spx as a multifaceted regulator and attractive drug discovery target.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana/genética , Rifampina/farmacologia , Staphylococcus aureus/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Alelos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Staphylococcus aureus/genética , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas
11.
Antimicrob Agents Chemother ; 59(11): 6983-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26324273

RESUMO

Daptomycin is a lipopeptide antibiotic used clinically for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. The emergence of daptomycin-nonsusceptible S. aureus isolates during therapy is often associated with multiple genetic changes; however, the relative contributions of these changes to resistance and other phenotypic changes usually remain unclear. The present study was undertaken to investigate this issue using a genetically characterized series of four isogenic clinical MRSA strains derived from a patient with bacteremia before and during daptomycin treatment. The first strain obtained after daptomycin therapy carried a single-nucleotide polymorphism (SNP) in rpoB (RpoB A477D) that decreased susceptibility not only to daptomycin but also to vancomycin, ß-lactams, and rifampin. Furthermore, the rpoB mutant exhibited pleiotropic phenotypes, including increased cell wall thickness, reduced expression of virulence traits, induced expression of the stress-associated transcriptional regulator Spx, and slow growth. A subsequently acquired loss-of-function mutation in clpX partly alleviated the growth defect conferred by the rpoB mutation without changing antibiotic susceptibility. The final isolate acquired three additional mutations, including an SNP in mprF (MprF S295L) known to confer daptomycin nonsusceptibility, and accordingly, this isolate was the only daptomycin-nonsusceptible strain of this series. Interestingly, in this isolate, the cell wall had regained the same thickness as that of the parental strain, while the level of transcription of the vraSR (cell wall stress regulator) was increased. In conclusion, this study illustrates how serial genetic changes selected in vivo contribute to daptomycin nonsusceptibility, growth fitness, and virulence traits.


Assuntos
Daptomicina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Rifampina/farmacologia , Staphylococcus aureus/genética , Vancomicina/farmacologia
12.
Antimicrob Agents Chemother ; 58(8): 4593-603, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24867990

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has acquired the mecA gene encoding a peptidoglycan transpeptidase, penicillin binding protein 2a (PBP2a), which has decreased affinity for ß-lactams. Quickly spreading and highly virulent community-acquired (CA) MRSA strains recently emerged as a frequent cause of infection in individuals without exposure to the health care system. In this study, we found that the inactivation of the components of the ClpXP protease substantially increased the ß-lactam resistance level of a CA-MRSA USA300 strain, suggesting that the proteolytic activity of ClpXP controls one or more pathways modulating ß-lactam resistance. These pathways do not involve the control of mecA expression, as the cellular levels of PBP2a were unaltered in the clp mutants. An analysis of the cell envelope properties of the clpX and clpP mutants revealed a number of distinct phenotypes that may contribute to the enhanced ß-lactam tolerance. Both mutants displayed significantly thicker cell walls, increased peptidoglycan cross-linking, and altered composition of monomeric muropeptide species compared to those of the wild types. Moreover, changes in Sle1-mediated peptidoglycan hydrolysis and altered processing of the major autolysin Atl were observed in the clp mutants. In conclusion, the results presented here point to an important role for the ClpXP protease in controlling cell wall metabolism and add novel insights into the molecular factors that determine strain-dependent ß-lactam resistance.


Assuntos
Parede Celular/genética , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus Resistente à Meticilina/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Proteínas de Bactérias , Parede Celular/efeitos dos fármacos , Parede Celular/enzimologia , Endopeptidase Clp/deficiência , Isoenzimas/deficiência , Isoenzimas/genética , Redes e Vias Metabólicas/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Mutação , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Ligação às Penicilinas , Peptidoglicano/metabolismo , beta-Lactamas/farmacologia
13.
PLoS One ; 8(9): e77122, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098817

RESUMO

Staphylococcus aureus strains of the 8325 lineage, especially 8325-4 and derivatives lacking prophage, have been used extensively for decades of research. We report herein the results of our deep sequence analysis of strain 8325-4. Assignment of sequence variants compared with the reference strain 8325 (NRS77/PS47) required correction of errors in the 8325 reference genome, and reassessment of variation previously attributed to chemical mutagenesis of the restriction-defective RN4220. Using an extensive strain pedigree analysis, we discovered that 8325-4 contains 16 single nucleotide polymorphisms (SNP) arising prior to the construction of RN4220. We identified 5 indels in 8325-4 compared with 8325. Three indels correspond to expected Φ11, 12, 13 excisions, one indel is explained by a sequence assembly artifact, and the final indel (Δ63bp) in the spa-sarS intergenic region is common to only a sub-lineage of 8325-4 strains including SH1000. This deletion was found to significantly decrease (75%) steady state sarS but not spa transcript levels in post-exponential phase. The sub-lineage 8325-4 was also found to harbor 4 additional SNPs. We also found large sequence variation between 8325, 8325-4 and RN4220 in a cluster of repetitive hypothetical proteins (SA0282 homologs) near the Ess secretion cluster. The overall 8325-4 SNP set results in 17 alterations within coding sequences. Remarkably, we discovered that all tested strains of the 8325-4 lineage lack phenol soluble modulin α3 (PSMα3), a virulence determinant implicated in neutrophil chemotaxis, biofilm architecture and surface spreading. Collectively, our results clarify and define the 8325-4 pedigree and reveal clear evidence that mutations existing throughout all branches of this lineage, including the widely used RN6390 and SH1000 strains, could conceivably impact virulence regulation.


Assuntos
Variação Genética/genética , Genoma Bacteriano/genética , Staphylococcus aureus/genética , Sequência de Aminoácidos , Sequência de Bases , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação INDEL/genética , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
14.
mBio ; 3(6): e00459-12, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23143800

RESUMO

UNLABELLED: Staphylococcus aureus is a human commensal that at times turns into a serious bacterial pathogen causing life-threatening infections. For the delicate control of virulence, S. aureus employs the agr quorum-sensing system that, via the intracellular effector molecule RNAIII, regulates virulence gene expression. We demonstrate that the presence of the agr locus imposes a fitness cost on S. aureus that is mediated by the expression of RNAIII. Further, we show that exposure to sublethal levels of the antibiotics ciprofloxacin, mupirocin, and rifampin, each targeting separate cellular functions, markedly increases the agr-mediated fitness cost by inducing the expression of RNAIII. Thus, the extensive use of antibiotics in hospitals may explain why agr-negative variants are frequently isolated from hospital-acquired S. aureus infections but rarely found among community-acquired S. aureus strains. Importantly, agr deficiency correlates with increased duration of and mortality due to bacteremia during antibiotic treatment and with a higher frequency of glycopeptide resistance than in agr-carrying strains. Our results provide an explanation for the frequent isolation of agr-defective strains from hospital-acquired S. aureus infections and suggest that the adaptability of S. aureus to antibiotics involves the agr locus. IMPORTANCE: Staphylococcus aureus is the most frequently isolated pathogen in intensive care units and a common cause of nosocomial infections, resulting in a high degree of morbidity and mortality. Surprisingly, a large fraction (15 to 60%) of hospital-isolated S. aureus strains are agr defective and lack the main quorum-sensing-controlled virulence regulatory system. This is a problem, as agr-defective strains are associated with a mortality level in bacteremic infections and a probability of glycopeptide resistance greater than those of other strains. We show here that agr-negative strains have a fitness advantage over agr-positive strains in the presence of sublethal concentrations of some antibiotics and that the fitness defect of agr-positive cells is caused by antibiotic-mediated expression of the agr effector molecule RNAIII. These results offer an explanation of the frequent isolation of agr-defective S. aureus strains in hospitals and will influence how we treat S. aureus infections.


Assuntos
Antibacterianos/farmacologia , Percepção de Quorum , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Staphylococcus aureus/genética , Transativadores/genética , Transativadores/metabolismo
15.
Gut Pathog ; 4(1): 3, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22534208

RESUMO

BACKGROUND: Campylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear. RESULTS: In the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni's HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori's HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria. CONCLUSION: These results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.

16.
J Proteome Res ; 11(1): 95-108, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22112206

RESUMO

In Staphylococcus aureus, ClpP proteases were previously shown to be essential for virulence and stress tolerance in strains derived from NCTC8325. Because these strains exhibit a severely reduced activity of the alternative sigma factor, SigB, we here reassessed the role of ClpP in SigB-proficient clinical strains. To this end, clpP was deleted in strains COL, Newman, and SA564, and the strains were characterized phenotypically. The proteomic changes accomplished by the clpP deletion in the different strains were analyzed using the 2-D DIGE technique. The proteomic analyses revealed mostly conserved changes in the protein profiles of the ClpP-deficient strains. Among the strain-specific changes were the up-regulation of prophage proteins that coincided with an increased spontaneous release of prophages and the relatively poorer growth of the clpP mutants in some strain backgrounds. Interestingly, the effect of ClpP on the expression of selected virulence genes was strain-dependent despite the fact that the expression of the global virulence regulators RNAIII, mgrA, sarZ, sarR, and arlRS was similarly changed in all clpP mutants. ClpP affected the expression of sarS in a strain-dependent manner, and we propose that the differential expression of sarS is central to the strain-dependent effect of ClpP on the expression of virulence genes.


Assuntos
Endopeptidase Clp/genética , Staphylococcus aureus/fisiologia , Estresse Fisiológico , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Fenótipo , Prófagos , Proteoma/genética , Proteoma/isolamento & purificação , Proteoma/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Transativadores/genética , Transativadores/metabolismo , Eletroforese em Gel Diferencial Bidimensional , Urease/metabolismo , Virulência
17.
Gut Pathog ; 3: 13, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21939552

RESUMO

BACKGROUND: Acute gastroenteritis caused by the food-borne pathogen Campylobacter jejuni is associated with attachment of bacteria to the intestinal epithelium and subsequent invasion of epithelial cells. In C. jejuni, the periplasmic protein HtrA is required for efficient binding to epithelial cells. HtrA has both protease and chaperone activity, and is important for virulence of several bacterial pathogens. RESULTS: The aim of this study was to determine the role of the dual activities of HtrA in host cell interaction of C. jejuni by comparing an htrA mutant lacking protease activity, but retaining chaperone activity, with a ΔhtrA mutant and the wild type strain. Binding of C. jejuni to both epithelial cells and macrophages was facilitated mainly by HtrA chaperone activity that may be involved in folding of outer membrane adhesins. In contrast, HtrA protease activity played only a minor role in interaction with host cells. CONCLUSION: We show that HtrA protease and chaperone activities contribute differently to C. jejuni's interaction with mammalian host cells, with the chaperone activity playing the major role in host cell binding.

18.
Appl Environ Microbiol ; 77(1): 57-66, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21075890

RESUMO

The microaerophilic bacterium Campylobacter jejuni is the most common cause of bacterial food-borne infections in the developed world. Tolerance to environmental stress relies on proteases and chaperones in the cell envelope, such as HtrA and SurA. HtrA displays both chaperone and protease activities, but little is known about how each of these activities contributes to stress tolerance in bacteria. In vitro experiments showed temperature-dependent protease and chaperone activities of C. jejuni HtrA. A C. jejuni mutant lacking only the protease activity of HtrA was used to show that the HtrA chaperone activity is sufficient for growth at high temperature or under oxidative stress, whereas the HtrA protease activity is essential only under conditions close to the growth limit for C. jejuni. However, the protease activity was required to prevent induction of the cytoplasmic heat shock response even under optimal growth conditions. Interestingly, the requirement of HtrA at high temperatures was found to depend on the oxygen level, and our data suggest that HtrA may protect oxidatively damaged proteins. Finally, protease activity stimulates HtrA production and oligomer formation, suggesting that a regulatory role depends on the protease activity of HtrA. Studying a microaerophilic organism encoding only two known periplasmic chaperones (HtrA and SurA) revealed an efficient HtrA chaperone activity and proposed multiple roles of the protease activity, increasing our understanding of HtrA in bacterial physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/enzimologia , Campylobacter jejuni/fisiologia , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/metabolismo , Estresse Fisiológico , Proteínas de Bactérias/genética , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/efeitos da radiação , Temperatura Alta , Chaperonas Moleculares/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Estresse Oxidativo , Peptídeo Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...