Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(3): e0246287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720959

RESUMO

Lactococcus lactis strains are important components in industrial starter cultures for cheese manufacturing. They have many strain-dependent properties, which affect the final product. Here, we explored the use of machine learning to create systematic, high-throughput screening methods for these properties. Fast acidification of milk is such a strain-dependent property. To predict the maximum hourly acidification rate (Vmax), we trained Random Forest (RF) models on four different genomic representations: Presence/absence of gene families, counts of Pfam domains, the 8 nucleotide long subsequences of their DNA (8-mers), and the 9 nucleotide long subsequences of their DNA (9-mers). Vmax was measured at different temperatures, volumes, and in the presence or absence of yeast extract. These conditions were added as features in each RF model. The four models were trained on 257 strains, and the correlation between the measured Vmax and the predicted Vmax was evaluated with Pearson Correlation Coefficients (PC) on a separate dataset of 85 strains. The models all had high PC scores: 0.83 (gene presence/absence model), 0.84 (Pfam domain model), 0.76 (8-mer model), and 0.85 (9-mer model). The models all based their predictions on relevant genetic features and showed consensus on systems for lactose metabolism, degradation of casein, and pH stress response. Each model also predicted a set of features not found by the other models.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Lactococcus lactis/fisiologia , Leite/química , Animais , Simulação por Computador , Microbiologia de Alimentos , Genoma Bacteriano , Concentração de Íons de Hidrogênio , Lactococcus lactis/genética , Aprendizado de Máquina , Leite/microbiologia , Modelos Teóricos , Sequenciamento Completo do Genoma
2.
Sci Rep ; 8(1): 5711, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29632323

RESUMO

Here we show that a commercial blocking reagent (G2) based on modified eukaryotic DNA significantly improved DNA extraction efficiency. We subjected G2 to an inter-laboratory testing, where DNA was extracted from the same clay subsoil using the same batch of kits. The inter-laboratory extraction campaign revealed large variation among the participating laboratories, but the reagent increased the number of PCR-amplified16S rRNA genes recovered from biomass naturally present in the soils by one log unit. An extensive sequencing approach demonstrated that the blocking reagent was free of contaminating DNA, and may therefore also be used in metagenomics studies that require direct sequencing.


Assuntos
DNA Ribossômico/isolamento & purificação , RNA Ribossômico 16S/isolamento & purificação , Kit de Reagentes para Diagnóstico/normas , Biomassa , Argila , Contaminação por DNA , DNA Ribossômico/genética , Laboratórios , Metagenômica , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
3.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188205

RESUMO

The aim of this study is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.IMPORTANCE The key chloroethene-dechlorinating bacterium Dehalococcoides mccartyi is a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions between Dehalococcoides and the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles of Veillonellaceae species in the communities compared to other coexisting community members in producing and providing corrinoids for Dehalococcoides species under cobalamin-limited conditions.


Assuntos
Chloroflexi/genética , Chloroflexi/metabolismo , Perfilação da Expressão Gênica , Metagenômica , Consórcios Microbianos , Vitamina B 12/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Vias Biossintéticas/genética , Chloroflexi/efeitos dos fármacos , Corrinoides/metabolismo , Genoma Bacteriano , Halogenação , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/genética , Tricloroetileno/metabolismo , Veillonellaceae/genética , Veillonellaceae/metabolismo , Vitamina B 12/farmacologia
4.
Front Microbiol ; 7: 1474, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708629

RESUMO

Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns.

6.
Sci Rep ; 5: 11444, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26161690

RESUMO

Human populations worldwide are increasingly confronted with infectious diseases and antimicrobial resistance spreading faster and appearing more frequently. Knowledge regarding their occurrence and worldwide transmission is important to control outbreaks and prevent epidemics. Here, we performed shotgun sequencing of toilet waste from 18 international airplanes arriving in Copenhagen, Denmark, from nine cities in three world regions. An average of 18.6 Gb (14.8 to 25.7 Gb) of raw Illumina paired end sequence data was generated, cleaned, trimmed and mapped against reference sequence databases for bacteria and antimicrobial resistance genes. An average of 106,839 (0.06%) reads were assigned to resistance genes with genes encoding resistance to tetracycline, macrolide and beta-lactam resistance genes as the most abundant in all samples. We found significantly higher abundance and diversity of genes encoding antimicrobial resistance, including critical important resistance (e.g. blaCTX-M) carried on airplanes from South Asia compared to North America. Presence of Salmonella enterica and norovirus were also detected in higher amounts from South Asia, whereas Clostridium difficile was most abundant in samples from North America. Our study provides a first step towards a potential novel strategy for global surveillance enabling simultaneous detection of multiple human health threatening genetic elements, infectious agents and resistance genes.


Assuntos
Farmacorresistência Bacteriana/genética , Genômica , Águas Residuárias/microbiologia , Aeronaves , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Análise por Conglomerados , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/patologia , Doenças Transmissíveis/virologia , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Farmacorresistência Bacteriana/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Norovirus/genética , Norovirus/isolamento & purificação , Filogenia , RNA Viral/química , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Análise de Sequência de DNA , Águas Residuárias/virologia
7.
Front Microbiol ; 6: 399, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25983731

RESUMO

The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

8.
Nat Commun ; 5: 5498, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25423494

RESUMO

Vultures are scavengers that fill a key ecosystem niche, in which they have evolved a remarkable tolerance to bacterial toxins in decaying meat. Here we report the first deep metagenomic analysis of the vulture microbiome. Through face and gut comparisons of 50 vultures representing two species, we demonstrate a remarkably conserved low diversity of gut microbial flora. The gut samples contained an average of 76 operational taxonomic units (OTUs) per specimen, compared with 528 OTUs on the facial skin. Clostridia and Fusobacteria, widely pathogenic to other vertebrates, dominate the vulture's gut microbiota. We reveal a likely faecal-oral-gut route for their origin. DNA of prey species detectable on facial swabs was completely degraded in the gut samples from most vultures, suggesting that the gastrointestinal tracts of vultures are extremely selective. Our findings show a strong adaption of vultures and their bacteria to their food source, exemplifying a specialized host-microbial alliance.


Assuntos
Bactérias/isolamento & purificação , Aves/microbiologia , Metagenômica , Microbiota , Animais , Bactérias/classificação , Bactérias/genética , Ecossistema , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Filogenia , Pele/microbiologia
9.
Extremophiles ; 18(6): 945-51, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24951969

RESUMO

The microbial abundance and diversity in snow on ice floes at three sites near the North Pole was assessed using quantitative PCR and 454 pyrosequencing. Abundance of 16S rRNA genes in the samples ranged between 43 and 248 gene copies per millilitre of melted snow. A total of 291,331 sequences were obtained through 454 pyrosequencing of 16S rRNA genes, resulting in 984 OTUs at 97 % identity. Two sites were dominated by Cyanobacteria (72 and 61 %, respectively), including chloroplasts. The third site differed by consisting of 95 % Proteobacteria. Principal component analysis showed that the three sites clustered together when compared to the underlying environments of sea ice and ocean water. The Shannon indices ranged from 2.226 to 3.758, and the Chao1 indices showed species richness between 293 and 353 for the three samples. The relatively low abundances and diversity found in the samples indicate a lower rate of microbial input to this snow habitat compared to snow in the proximity of terrestrial and anthropogenic sources of microorganisms. The differences in species composition and diversity between the sites show that apparently similar snow habitats contain a large variation in biodiversity, although the differences were smaller than the differences to the underlying environment. The results support the idea that a globally distributed community exists in snow and that the global snow community can in part be attributed to microbial input from the atmosphere.


Assuntos
Microbiota , Água do Mar/microbiologia , Neve/microbiologia , Regiões Árticas , Cianobactérias/isolamento & purificação , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
10.
Appl Environ Microbiol ; 80(12): 3568-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24610853

RESUMO

In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon sequencing. HRM analysis was shown to be a fast, high-throughput technique that can serve as an effective alternative to gel-based screening methods to monitor microbial community composition.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/química , Ensaios de Triagem em Larga Escala/métodos , RNA Ribossômico 16S/química , Microbiologia do Solo , Bactérias/química , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Ecossistema , Fertilizantes/análise , RNA Ribossômico 16S/genética , Temperatura de Transição
11.
ISME J ; 8(7): 1464-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24451203

RESUMO

The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of ∼4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using (14)C-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of (14)C-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)'s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem.


Assuntos
Alteromonadaceae/genética , Proteínas de Bactérias/genética , Gammaproteobacteria/genética , Metagenômica , Poluição por Petróleo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Alteromonadaceae/metabolismo , Proteínas de Bactérias/metabolismo , Radioisótopos de Carbono , Ecossistema , Gammaproteobacteria/metabolismo , Expressão Gênica , Golfo do México , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Nitrogênio/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Água do Mar/microbiologia
12.
Environ Pollut ; 186: 149-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24374375

RESUMO

A molecular study on how the abundance of the dechlorinating culture KB-1 affects dechlorination rates in clay till is presented. DNA extracts showed changes in abundance of specific dechlorinators as well as their functional genes. Independently of the KB-1 added, the microbial dechlorinator abundance increased to the same level in all treatments. In the non-bioaugmented microcosms the reductive dehalogenase gene bvcA increased in abundance, but when KB-1 was added the related vcrA gene increased while bvcA genes did not increase. Modeling showed higher vinyl-chloride dechlorination rates and shorter time for complete dechlorination to ethene with higher initial concentration of KB-1 culture, while cis-dichloroethene dechlorination rates were not affected by KB-1 concentrations. This study provides high resolution abundance profiles of Dehalococcoides spp. (DHC) and functional genes, highlights the ecological behavior of KB-1 in clay till, and reinforces the importance of using multiple functional genes as biomarkers for reductive dechlorination.


Assuntos
Silicatos de Alumínio/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Cloreto de Vinil/metabolismo , Biodegradação Ambiental , Argila , DNA Bacteriano , Etilenos/análise , Etilenos/metabolismo , Halogenação , Cinética , Modelos Químicos , Poluentes do Solo/análise , Cloreto de Vinil/análise
13.
Biodegradation ; 25(2): 217-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23824341

RESUMO

Animal manure is applied to agricultural land in areas of high livestock production. In the present study, we evaluated ageing of atrazine in two topsoils with and without addition of manure and in one subsoil. Ageing was assessed as the bioavailability of atrazine to the atrazine mineralizing bacteria Pseudomonas sp. strain ADP. Throughout an ageing period of 90 days bioavailability was investigated at days 1, 10, 32, 60 and 90, where ~10(8) cells g(-1) of the ADP strain was inoculated to the (14)C-atrazine exposed soil and (14)CO2 was collected over 7 days as a measure of mineralized atrazine. Even though the bioavailable residue decreased in all of the three soils as time proceeded, we found that ageing occurred faster in the topsoils rich in organic carbon than in subsoil. For one topsoil rich in organic carbon content, Simmelkær, we observed a higher degree of ageing when treated with manure. Contrarily, sorption experiments showed less sorption to Simmelkær treated with manure than the untreated soil indicating that sorption processes are not the only mechanisms of ageing. The other topsoil low in organic carbon content, Ringe, showed no significant difference in ageing between the manure-treated and untreated soil. The present study illustrates that not simply the organic carbon content influences adsorption and ageing of atrazine in soil but the origin and composition of organic matter plays an important role.


Assuntos
Atrazina/metabolismo , Herbicidas/metabolismo , Esterco/microbiologia , Pseudomonas/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Esterco/análise , Solo/química
14.
Water Res ; 47(7): 2467-78, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23490098

RESUMO

We used current knowledge of cellular processes involved in reductive dechlorination to develop a conceptual model to describe the regulatory system of dechlorination at the cell level; the model links bacterial growth and substrate consumption to the abundance of messenger RNA of functional genes involved in the dechlorination process. The applicability of the model was tested on a treatability study of biostimulated and bioaugmented microcosms. Using quantitative real time PCR, high-resolution expression profiles of the functional reductive dehalogenase genes bvcA and vcrA were obtained during two consecutive dechlorination events of trichlorethene, cis-dichlorethene and vinyl chloride. Up-regulation of the bvcA (for the biostimulated microcosms) and vcrA (for the bioaugmented microcosms) gene expression fitted well with high rates of dechlorination of vinyl chloride, while no known transcripts could be measured during trichloroethene and cis-dichlorethene dechlorination. Maximum concentrations of 2.1 and 1.7 transcripts per gene of the bvcA and vcrA genes, respectively, were measured at the same time points as maximum dechlorination rates were observed. The developed model compared well with the experimental data for both biostimulated and bioaugmented microcosms under non-steady state conditions and was supported by results from a recently published study under steady state conditions.


Assuntos
Silicatos de Alumínio/química , Regulação Bacteriana da Expressão Gênica , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Halogenação/genética , Hidrocarbonetos Clorados/metabolismo , Modelos Teóricos , Bactérias/genética , Biodegradação Ambiental , Argila , Simulação por Computador , DNA Bacteriano/genética , Genes Bacterianos/genética , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solventes , Fatores de Tempo , Tricloroetileno/metabolismo , Cloreto de Vinil/metabolismo
15.
J Contam Hydrol ; 146: 37-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23357226

RESUMO

The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) to 1,2-cis-dichloroethene (cis-DCE) and 1,1-dichloroethane, respectively, had developed in most of the clay till matrix. Dehalobacter dominated over Dehalococcoides (Dhc) in the clay till matrix corresponding with stagnation of sequential dechlorination at cis-DCE. Sporadically distributed bioactive zones with partial degradation to ethene were identified in the clay till matrix (thickness from 0.10 to 0.22 m). In one sub-section profile the presence of Dhc with the vcrA gene supported the occurrence of degradation of cis-DCE and VC, and in another enriched δ(13)C for TCE, cis-DCE and VC documented degradation. Highly enriched δ(13)C for 1,1,1-TCA (25‰) and cis-DCE (-4‰) suggested the occurrence of abiotic degradation in a third sub-section profile. Due to fine scale heterogeneity the identification of active degradation zones in the clay till matrix depended on high resolution subsampling of the clay till cores. The study demonstrates that an integrated approach combining chemical analysis, molecular microbial tools and compound specific isotope analysis (CSIA) was required in order to document biotic and abiotic degradations in the clay till system.


Assuntos
Bactérias/metabolismo , Monitoramento Ambiental/métodos , Água Subterrânea/microbiologia , Hidrocarbonetos Clorados/metabolismo , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/metabolismo , Alcanos/análise , Alcanos/metabolismo , Silicatos de Alumínio/análise , Bactérias/isolamento & purificação , Biodegradação Ambiental , Argila , Dinamarca , Etilenos/análise , Etilenos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Água Subterrânea/análise , Hidrocarbonetos Clorados/análise , Reação em Cadeia da Polimerase em Tempo Real , Poluentes do Solo/análise , Solventes/análise , Solventes/metabolismo , Espectrofotometria Atômica , Poluentes Químicos da Água/análise
16.
Biotechnol Bioeng ; 110(1): 1-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22926627

RESUMO

Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biological process, where many microbial populations including dechlorinating, fermentative, methanogenic, iron and sulfate reducing, interact. In this article the modeling approaches and the experimental data needed to calibrate them are reviewed, classified, and discussed. Model approaches considered include first order kinetics, Monod kinetics to describe sequential reductive dechlorination and bacterial growth, and metabolic models which simulate fermentation and redox processes interacting with reductive dechlorination processes. The review shows that the estimated kinetic parameters reported vary over a wide range, and that experimental microbial data are scarce. Very few studies have been performed evaluating the influence of sulfate and iron reduction, and contradictory conclusions on the interaction of redox processes with reductive dechlorination have been reported. The modeling approaches for metabolic reductive dechlorination employing different descriptions of the interaction between redox and dechlorination processes and competition for hydrogen are classified. The current concepts lead to different results, suggesting a need for further investigations on the interactions between the microbial communities performing dechlorination and redox processes, including the establishment of biomarkers quantifying dechlorination, and on geochemical characterization. Finally, the relevance of laboratory data and the development of practical modeling tools for field applications are discussed.


Assuntos
Modelos Biológicos , Modelos Químicos , Poluentes do Solo/química , Tetracloroetileno/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Chloroflexi/metabolismo , Halogenação , Cinética , Poluentes do Solo/metabolismo , Tetracloroetileno/metabolismo , Tricloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo
17.
Appl Environ Microbiol ; 78(15): 5305-12, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22635998

RESUMO

Mineralization potentials, rates, and kinetics of the three phenoxy acid (PA) herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), were investigated and compared in 15 soils collected from five continents. The mineralization patterns were fitted by zero/linear or exponential growth forms of the three-half-order models and by logarithmic (log), first-order, or zero-order kinetic models. Prior and subsequent to the mineralization event, tfdA genes were quantified using real-time PCR to estimate the genetic potential for degrading PA in the soils. In 25 of the 45 mineralization scenarios, ∼60% mineralization was observed within 118 days. Elevated concentrations of tfdA in the range 1 × 10(5) to 5 × 10(7) gene copies g(-1) of soil were observed in soils where mineralization could be described by using growth-linked kinetic models. A clear trend was observed that the mineralization rates of the three PAs occurred in the order 2,4-D > MCPA > MCPP, and a correlation was observed between rapid mineralization and soils exposed to PA previously. Finally, for 2,4-D mineralization, all seven mineralization patterns which were best fitted by the exponential model yielded a higher tfdA gene potential after mineralization had occurred than the three mineralization patterns best fitted by the Lin model.


Assuntos
Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Dioxigenases/genética , Genes Bacterianos/genética , Herbicidas/metabolismo , Modelos Biológicos , Microbiologia do Solo , Primers do DNA/genética , Cinética , Minerais/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
Environ Microbiol ; 14(9): 2405-16, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22616650

RESUMO

The Deepwater Horizon oil spill resulted in a massive influx of hydrocarbons into the Gulf of Mexico (the Gulf). To better understand the fate of the oil, we enriched and isolated indigenous hydrocarbon-degrading bacteria from deep, uncontaminated waters from the Gulf with oil (Macondo MC252) and dispersant used during the spill (COREXIT 9500). During 20 days of incubation at 5°C, CO(2) evolution, hydrocarbon concentrations and the microbial community composition were determined. Approximately 60% to 25% of the dissolved oil with or without COREXIT, respectively, was degraded, in addition to some hydrocarbons in the COREXIT. FeCl(2) addition initially increased respiration rates, but not the total amount of hydrocarbons degraded. 16S rRNA gene sequencing revealed a succession in the microbial community over time, with an increase in abundance of Colwellia and Oceanospirillales during the incubations. Flocs formed during incubations with oil and/or COREXIT in the absence of FeCl(2) . Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy revealed that the flocs were comprised of oil, carbohydrates and biomass. Colwellia were the dominant bacteria in the flocs. Colwellia sp. strain RC25 was isolated from one of the enrichments and confirmed to rapidly degrade high amounts (approximately 75%) of the MC252 oil at 5°C. Together these data highlight several features that provide Colwellia with the capacity to degrade oil in cold, deep marine habitats, including aggregation together with oil droplets into flocs and hydrocarbon degradation ability.


Assuntos
Lipídeos , Poluição por Petróleo , Petróleo/metabolismo , Microbiologia da Água , Alteromonadaceae/genética , Alteromonadaceae/isolamento & purificação , Alteromonadaceae/metabolismo , Alteromonadaceae/ultraestrutura , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carga Bacteriana , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Guerra do Golfo , RNA Ribossômico 16S/genética
19.
FEMS Microbiol Ecol ; 80(2): 331-41, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22611553

RESUMO

Centimetre-scale vertical distribution of mineralization potential was determined for 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) by 96-well microplate radiorespirometric analysis in aquifer sediment sampled just below the groundwater table. Mineralization of 2,4-D and MCPA was fastest in sediment samples taken close to the groundwater table, whereas only minor mineralization of MCPP was seen. Considerable variability was exhibited at increasing aquifer depth, more so with 2,4-D than with MCPA. This suggests that the abundance of MCPA degraders was greater than that of 2,4-D degraders, possibly due to the fact that the overlying agricultural soil had long been treated with MCPA. Mineralization of 2,4-D and MCPA was followed by increased abundance of tfdA class I and class III catabolic genes, which are known to be involved in the metabolism of phenoxy acid herbicides. tfdA class III gene copy number was approximately 100-fold greater in samples able to mineralize MCPA than in samples able to mineralize 2,4-D, suggesting that tfdA class III gene plays a greater role in the metabolism of MCPA than of 2,4-D. Degradation rate was found to correlate positively with tfdA gene copy number, as well as with the total organic carbon content of the sediment.


Assuntos
Sedimentos Geológicos/química , Herbicidas/metabolismo , Oxigenases de Função Mista/genética , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Ácido 2,4-Diclorofenoxiacético/análise , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Ácido 2-Metil-4-clorofenoxiacético/análise , Ácido 2-Metil-4-clorofenoxiacético/química , Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Genes Bacterianos , Água Subterrânea/química , Água Subterrânea/microbiologia , Herbicidas/análise , Herbicidas/química , Oxigenases de Função Mista/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
20.
Appl Environ Microbiol ; 78(15): 5070-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22582066

RESUMO

The Greenland ice sheet (GrIS) receives organic carbon (OC) of anthropogenic origin, including pesticides, from the atmosphere and/or local sources, and the fate of these compounds in the ice is currently unknown. The ability of supraglacial heterotrophic microbes to mineralize different types of OC is likely a significant factor determining the fate of anthropogenic OC on the ice sheet. Here we determine the potential of the microbial community from the surface of the GrIS to mineralize the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Surface ice cores were collected and incubated for up to 529 days in microcosms simulating in situ conditions. Mineralization of side chain- and ring-labeled [(14)C]2,4-D was measured in the samples, and quantitative PCR targeting the tfdA genes in total DNA extracted from the ice after the experiment was performed. We show that the supraglacial microbial community on the GrIS contains microbes that are capable of degrading 2,4-D and that they are likely present in very low numbers. They can mineralize 2,4-D at a rate of up to 1 nmol per m(2) per day, equivalent to ∼26 ng C m(-2) day(-1). Thus, the GrIS should not be considered a mere reservoir of all atmospheric contaminants, as it is likely that some deposited compounds will be removed from the system via biodegradation processes before their potential release due to the accelerated melting of the ice sheet.


Assuntos
Ácido 2,4-Diclorofenoxiacético/metabolismo , Bactérias/metabolismo , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Herbicidas/metabolismo , Camada de Gelo/microbiologia , Filogenia , Bactérias/genética , Sequência de Bases , Biodegradação Ambiental , Clonagem Molecular , Primers do DNA/genética , Groenlândia , Cinética , Funções Verossimilhança , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...