Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 97: 105792, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364873

RESUMO

The objective of Safe-by-Design (SbD) is to support the development of safer products and production processes, and enable safe use throughout a materials' life cycle; an intervention at an early stage of innovation can greatly benefit industry by reducing costs associated with the development of products later found to elicit harmful effects. Early hazard screening can support this process, and is needed for all of the expected nanomaterial exposure routes, including inhalation, ingestion and dermal. In this study, we compare in vitro and ex vivo cell models that represent dermal exposures (including HaCaT cells, primary keratinocytes, and reconstructed human epidermis (RhE)), and when possible consider these in the context of regulatory accepted OECD TG for in vitro dermal irritation. Various benchmark nanomaterials were used to assess markers of cell stress in each cell model. In addition, we evaluated different dosing strategies that have been used when applying the OECD TG for dermal irritation in assessment of nanomaterials, and how inconsistencies in the approach used can have considerable impact of the conclusions made. Although we could not demonstrate alignment of all models used, there was an indication that the simpler in vitro cell model aligned more closely with RhE tissue than ex vivo primary keratinocytes, supporting the use of HaCaT cells for screening of dermal toxicity of nanomaterials and in early-stage SbD decision-making.


Assuntos
Queratinócitos , Nanoestruturas , Humanos , Epiderme , Nanoestruturas/toxicidade , Administração por Inalação , Células HaCaT
2.
PLoS One ; 18(9): e0288737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37713377

RESUMO

Toxicity evaluation of engineered nanomaterials is challenging due to the ever increasing number of materials and because nanomaterials (NMs) frequently interfere with commonly used assays. Hence, there is a need for robust, high-throughput assays with which to assess their hazard potential. The present study aimed at evaluating the applicability of a genotoxicity assay based on the immunostaining and foci counting of the DNA repair protein 53BP1 (p53-binding protein 1), in a high-throughput format, for NM genotoxicity assessment. For benchmarking purposes, we first applied the assay to a set of eight known genotoxic agents, as well as X-ray irradiation (1 Gy). Then, a panel of NMs and nanobiomaterials (NBMs) was evaluated with respect to their impact on cell viability and genotoxicity, and to their potential to induce reactive oxygen species (ROS) production. The genotoxicity recorded using the 53BP1 assay was confirmed using the micronucleus assay, also scored via automated (high-throughput) microscopy. The 53BP1 assay successfully identified genotoxic compounds on the HCT116 human intestinal cell line. None of the tested NMs showed any genotoxicity using the 53BP1 assay, except the positive control consisting in (CoO)(NiO) NMs, while only TiO2 NMs showed positive outcome in the micronucleus assay. Only Fe3O4 NMs caused significant elevation of ROS, not correlated to DNA damage. Therefore, owing to its adequate predictivity of the genotoxicity of most of the tested benchmark substance and its ease of implementation in a high throughput format, the 53BP1 assay could be proposed as a complementary high-throughput screening genotoxicity assay, in the context of the development of New Approach Methodologies.


Assuntos
Nanoestruturas , Proteína Supressora de Tumor p53 , Humanos , Espécies Reativas de Oxigênio , Benchmarking , Dano ao DNA
3.
Mater Adv ; 4(14): 2963-2970, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37465645

RESUMO

Bacterial microcompartments (BMCs) are proteinaceous organelle-like structures formed within bacteria, often encapsulating enzymes and cellular processes, in particular, allowing toxic intermediates to be shielded from the general cellular environment. Outside of their biological role they are of interest, through surface modification, as potential drug carriers and polyvalent antigen display scaffolds. Here we use a post-translational modification approach, using copper free click chemistry, to attach a SpyTag to a target protein molecule for attachment to a specific SpyCatcher modified BMC shell protein. We demonstrate that a post-translationally SpyTagged material can react with a SpyCatcher modified BMC and show its presence on the surface of BMCs, enabling future investigation of these structures as polyvalent antigen display scaffolds for vaccine development. This post-translational 'click' methodology overcomes the necessity to genetically encode the SpyTag, avoids any potential reduction in expression yield and expands the scope of SpyTag/SpyCatcher vaccine scaffolds to form peptide epitope vaccines and small molecule delivery agents.

4.
Toxics ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36976964

RESUMO

The widespread use of silver nanoparticles (Ag NPs) in food and consumer products suggests the relevance of human oral exposure to these nanomaterials (NMs) and raises the possibility of adverse effects in the gastrointestinal tract. The aim of this study was to investigate the toxicity of Ag NPs in a human intestinal cell line, either uncoated or coated with polyvinylpyrrolidone (Ag PVP) or hydroxyethylcellulose (Ag HEC) and digested in simulated gastrointestinal fluids. Physicochemical transformations of Ag NPs during the different stages of in vitro digestion were identified prior to toxicity assessment. The strategy for evaluating toxicity was constructed on the basis of adverse outcome pathways (AOPs) showing Ag NPs as stressors. It consisted of assessing Ag NP cytotoxicity, oxidative stress, genotoxicity, perturbation of the cell cycle and apoptosis. Ag NPs caused a concentration-dependent loss of cell viability and increased the intracellular level of reactive oxygen species as well as DNA damage and perturbation of the cell cycle. In vitro digestion of Ag NPs did not significantly modulate their toxicological impact, except for their genotoxicity. Taken together, these results indicate the potential toxicity of ingested Ag NPs, which varied depending on their coating but did not differ from that of non-digested NPs.

6.
Sci Rep ; 12(1): 20054, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414637

RESUMO

The repair of DNA double-strand breaks (DSBs) involves interdependent molecular pathways, of which the choice is crucial for a cell's fate when facing a damage. Growing evidence points toward the fact that DSB repair capacities correlate with disease aggressiveness, treatment response and treatment-related toxicities in cancer. Scientific and medical communities need more easy-to-use and efficient tools to rapidly estimate DSB repair capacities from a tissue, enable routine-accessible treatment personalization, and hopefully, improve survival. Here, we propose a new functional biochip assay (NEXT-SPOT) that characterizes DSB repair-engaged cellular pathways and provides qualitative and quantitative information on the contribution of several pathways in less than 2 h, from 10 mg of cell lysates. We introduce the NEXT-SPOT technology, detail the molecular characterizations of different repair steps occurring on the biochip, and show examples of DSB repair profiling using three cancer cell lines treated or not with a DSB-inducer (doxorubicin) and/or a DNA repair inhibitor (RAD51 inhibitor; DNA-PK inhibitor; PARP inhibitor). Among others, we demonstrate that NEXT-SPOT can accurately detect decreased activities in strand invasion and end-joining mechanisms following DNA-PK or RAD51 inhibition in DNA-PK-proficient cell lines. This approach offers an all-in-one reliable strategy to consider DSB repair capacities as predictive biomarkers easily translatable to the clinic.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Inibidores de Poli(ADP-Ribose) Polimerases , DNA/metabolismo
7.
Anal Bioanal Chem ; 414(26): 7705-7720, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36063170

RESUMO

UV-induced formation of photoproducts in DNA is a major initiating event of skin cancer. Consequently, many analytical tools have been developed for their quantification in DNA. In the present work, we extended our previous liquid chromatography-mass spectrometry method to the quantification of the short DNA fragments containing photoproducts that are released from cells by the repair machinery. We designed a robust protocol including a solid-phase extraction step (SPE), an enzymatic treatment aimed at releasing individual photoproducts, and a liquid chromatography method combining on-line SPE and ultra-high-performance liquid chromatography for optimal specificity and sensitivity. We also added relevant internal standards for a better accuracy. The method was validated for linearity, repeatability, and reproducibility. The limits of detection and quantification were found to be in the fmol range. The proof of concept of the use of excreted DNA repair products as biomarkers of the genotoxicity of UV was obtained first in in vitro studies using cultured HaCat cells and ex vivo on human skin explants. Further evidence was obtained from the detection of pyrimidine dimers in the urine of human volunteers collected after recreational exposure in summer. An assay was designed to quantify the DNA photoproducts released from cells within short fragments by the DNA repair machinery. These oligonucleotides were isolated by solid-phase extraction and enzymatically hydrolyzed. The photoproducts were then quantified by on-line SPE combined with UHPLC-MS/MS with isotopic dilution.


Assuntos
Dímeros de Pirimidina , Espectrometria de Massas em Tandem , Humanos , Dímeros de Pirimidina/química , Espectrometria de Massas em Tandem/métodos , Raios Ultravioleta/efeitos adversos , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida , DNA/genética , Biomarcadores
8.
Front Toxicol ; 4: 974429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171865

RESUMO

Engineered nanomaterials have been found to induce oxidative stress. Cellular oxidative stress, in turn, can result in the induction of antioxidant and detoxification enzymes which are controlled by the nuclear erythroid 2-related factor 2 (NRF2) transcription factor. Here, we present the results of a pre-validation study which was conducted within the frame of BIORIMA ("biomaterial risk management") an EU-funded research and innovation project. For this we used an NRF2 specific chemically activated luciferase expression reporter gene assay derived from the human U2OS osteosarcoma cell line to screen for the induction of the NRF2 mediated gene expression following exposure to biomedically relevant nanobiomaterials. Specifically, we investigated Fe3O4-PEG-PLGA nanomaterials while Ag and TiO2 "benchmark" nanomaterials from the Joint Research Center were used as reference materials. The viability of the cells was determined by using the Alamar blue assay. We performed an interlaboratory study involving seven different laboratories to assess the applicability of the NRF2 reporter gene assay for the screening of nanobiomaterials. The latter work was preceded by online tutorials to ensure that the procedures were harmonized across the different participating laboratories. Fe3O4-PEG-PLGA nanomaterials were found to induce very limited NRF2 mediated gene expression, whereas exposure to Ag nanomaterials induced NRF2 mediated gene expression. TiO2 nanomaterials did not induce NRF2 mediated gene expression. The variability in the results obtained by the participating laboratories was small with mean intra-laboratory standard deviation of 0.16 and mean inter laboratory standard deviation of 0.28 across all NRF2 reporter gene assay results. We conclude that the NRF2 reporter gene assay is a suitable assay for the screening of nanobiomaterial-induced oxidative stress responses.

9.
Part Fibre Toxicol ; 19(1): 49, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854319

RESUMO

BACKGROUND: The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature-lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)-were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. RESULTS: The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1ß, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. CONCLUSIONS: Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells.


Assuntos
Materiais Biocompatíveis , Mucosa Intestinal , Materiais Biocompatíveis/farmacologia , Células CACO-2 , Digestão , Humanos , Hidroxiapatitas/farmacologia , Lipossomos , Nanopartículas , Permeabilidade , Junções Íntimas
10.
Chem Sci ; 14(1): 196-202, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36605750

RESUMO

DNA-peptide conjugates offer an opportunity to marry the benefits of both biomolecular classes, combining the high level of programmability found with DNA, with the chemical diversity of peptides. These hybrid systems offer potential in fields such as therapeutics, nanotechnology, and robotics. Using the first DNA-ß-turn peptide conjugate, we present three studies investigating the self-assembly of DNA-peptide conjugates over a period of 28 days. Time-course studies, such as these have not been previously conducted for DNA-peptide conjugates, although they are common in pure peptide assembly, for example in amyloid research. By using aging studies to assess the structures produced, we gain insights into the dynamic nature of these systems. The first study explores the influence varying amounts of DNA-peptide conjugates have on the self-assembly of our parent peptide. Study 2 explores how DNA and peptide can work together to change the structures observed during aging. Study 3 investigates the presence of orthogonality within our system by switching the DNA and peptide control on and off independently. These results show that two orthogonal self-assemblies can be combined and operated independently or in tandem within a single macromolecule, with both spatial and temporal effects upon the resultant nanostructures.

11.
Toxicology ; 462: 152950, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34534560

RESUMO

Sulfur mustard, a chemical warfare agent known to be a vesicant of skin, readily diffuses in the blood stream and reaches internal organs. In the present study, we used the analog (2-chloroethyl)-ethyl-sulfide (CEES) to provide novel data on the systemic diffusion of vesicants and on their ability to induce brain damage, which result in neurological disorders. SKH-1 hairless mice were topically exposed to CEES and sacrificed at different time until 14 days after exposure. A plasma metabolomics study showed a strong systemic impact following a self-protection mechanism to alleviate the injury of CEES exposure. This result was confirmed by the quantification of specific biomarkers in plasma. Those were the conjugates of CEES with glutathione (GSH-CEES), cysteine (Cys-CEES) and N-acetyl-cysteine (NAC-CEES), as well as the guanine adduct (N7Gua-CEES). In brain, N7Gua-CEES could be detected both in DNA and in organ extracts. Similarly, GSH-CEES, Cys-CEES and NAC-CEES were present in the extracts until day14. Altogether, these results, based on novel exposure markers, confirm the ability of vesicants to induce internal damage following dermal exposure. The observation of alkylation damage to glutathione and DNA in brain provides an additional mechanism to the neurological insult of SM.


Assuntos
Encéfalo/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Dano ao DNA/efeitos dos fármacos , Gás de Mostarda/análogos & derivados , Administração Cutânea , Animais , Substâncias para a Guerra Química/farmacocinética , Glutationa/metabolismo , Metabolômica , Camundongos , Camundongos Pelados , Gás de Mostarda/administração & dosagem , Gás de Mostarda/farmacocinética , Gás de Mostarda/toxicidade , Pele/metabolismo , Fatores de Tempo , Distribuição Tecidual
12.
Anal Bioanal Chem ; 413(5): 1337-1351, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33410976

RESUMO

Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organisation for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) approach to the conjugate of CEES to glutathione and two of its metabolites: the cysteine and the N-acetylcysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid-phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetylcysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similar to SM, the results are promising for application to this toxic of interest.


Assuntos
Substâncias para a Guerra Química/efeitos adversos , Glutationa/análogos & derivados , Guanina/análogos & derivados , Gás de Mostarda/análogos & derivados , Animais , Linhagem Celular , Substâncias para a Guerra Química/análise , Cromatografia Líquida de Alta Pressão/métodos , Exposição Ambiental/efeitos adversos , Glutationa/efeitos adversos , Guanina/efeitos adversos , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Gás de Mostarda/efeitos adversos , Gás de Mostarda/análise , Pele/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Testes de Toxicidade/métodos
13.
Nurs Forum ; 56(1): 188-193, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33128408

RESUMO

This concept analysis aims to define affordability within the context of healthcare decision making. Affordability is a complex concept that influences an individual's healthcare decision making. In the year's post-Affordable Care Act, the United States has seen an increase in insured individuals, but also an increase in underinsured healthcare consumers. Evidence for the concept attributes was found by searching the Cumulative Index of Nursing and Allied Health Literature, EconLit, Family & Society Studies Worldwide, Humanities Full Text, and PsychINFO databases. Literature was synthesized using the Walker and Avant approach. A new definition was derived with four defining attributes, as well as antecedents and consequences. Three cases are forwarded: the model, borderline, and contrary. In healthcare decision making, affordability is a subjective measure that individuals use in determining the ability to engage in a healthcare service or a durable good transaction. Affordability varies based on circumstances. The context of healthcare decision making of individuals stands in contrast to the decision-making in health systems and to decisions unrelated to one's health. Affordability is a determinant of an individual's ability to engage in a transaction. As such, nurses and policymakers should attempt to understand affordability from the patient's perspective.


Assuntos
Formação de Conceito , Custos e Análise de Custo/classificação , Tomada de Decisões , Custos e Análise de Custo/normas , Humanos , Estados Unidos
14.
Front Genet ; 11: 561687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329698

RESUMO

Xeroderma Pigmentosum C (XPC) is a multi-functional protein that is involved not only in the repair of bulky lesions, post-irradiation, via nucleotide excision repair (NER) per se but also in oxidative DNA damage mending. Since base excision repair (BER) is the primary regulator of oxidative DNA damage, we characterized, post-Ultraviolet B-rays (UVB)-irradiation, the detailed effect of three different XPC mutations in primary fibroblasts derived from XP-C patients on mRNA, protein expression and activity of different BER factors. We found that XP-C fibroblasts are characterized by downregulated expression of different BER factors including OGG1, MYH, APE1, LIG3, XRCC1, and Polß. Such a downregulation was also observed at OGG1, MYH, and APE1 protein levels. This was accompanied with an increase in DNA oxidative lesions, as evidenced by 8-oxoguanine levels, immediately post-UVB-irradiation. Unlike in normal control cells, these oxidative lesions persisted over time in XP-C cells having lower excision repair capacities. Taken together, our results indicated that an impaired BER pathway in XP-C fibroblasts leads to longer persistence and delayed repair of oxidative DNA damage. This might explain the diverse clinical phenotypes in XP-C patients suffering from cancer in both photo-protected and photo-exposed areas. Therapeutic strategies based on reinforcement of BER pathway might therefore represent an innovative path for limiting the drawbacks of NER-based diseases, as in XP-C case.

15.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120920

RESUMO

Background: Oral exposure to titanium dioxide (TiO2) is common since it is widely used in food and pharmaceutical products. Concern on the safety of this substance has been recently raised, due to the presence of an ultrafine fraction in food-grade TiO2. Discrepancy exists among data reported in in vitro and in vivo studies on intestinal acute/chronic toxicity of TiO2. This might be due to the different biological identity of TiO2 in traditional in vitro test by respect in vivo conditions. Methods: One food-grade TiO2 and two nanometric TiO2 samples were treated with a simulated human digestive dystem (SHDS) in order to investigate the bio-transformation occurring to the particles once ingested in term of size distribution (Dynamic Light Scattering-DLS-, Flow Particle Imaging, Asymmetric Flow Field Flow Fractionation-AF4-) and surface modification (Electrophoretic Light Scattering-ELS-, Electron Paramagnetic Resonance Spectroscopy-EPR-). The effect of SHDS on the cyto-, genotoxicity and potential to induce oxidative stress towards human colorectal carcinoma HCT116 cells was also assessed. Results: Aggregation as a consequence of the high ionic strength of the gastric and intestinal simulated fluids was observed, together with the formation of a partially irreversible bio-corona containing phosphate ions and proteins. Such bio-corona led to a partial masking of the TiO2 particles surface and reactivity. Pristine and treated TiO2 nanoparticles showed comparable acute toxicity and genotoxicity toward HCT116 cells, whereas a small decrease of the induction of oxidative stress after treatment was observed. Conclusions: Overall the results underline the importance of SHDS as a tool to improve the predictive power of in vitro tests towards intestinal nanomaterial toxicity.

16.
iScience ; 23(9): 101512, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32920487

RESUMO

The division of amyloid protein fibrils is required for the propagation of the amyloid state and is an important contributor to their stability, pathogenicity, and normal function. Here, we combine kinetic nanoscale imaging experiments with analysis of a mathematical model to resolve and compare the division stability of amyloid fibrils. Our theoretical results show that the division of any type of filament results in self-similar length distributions distinct to each fibril type and the conditions applied. By applying these theoretical results to profile the dynamical stability toward breakage for four different amyloid types, we reveal particular differences in the division properties of disease-related amyloid formed from α-synuclein when compared with non-disease associated model amyloid, the former showing lowered intrinsic stability toward breakage and increased likelihood of shedding smaller particles. Our results enable the comparison of protein filaments' intrinsic dynamic stabilities, which are key to unraveling their toxic and infectious potentials.

17.
Front Oncol ; 10: 1551, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850458

RESUMO

The nevoid basal cell carcinoma syndrome (NBCCS), also called Gorlin syndrome is an autosomal dominant disorder whose incidence is estimated at about 1 per 55,600-256,000 individuals. It is characterized by several developmental abnormalities and an increased predisposition to the development of basal cell carcinomas (BCCs). Cutaneous fibroblasts from Gorlin patients have been shown to exhibit an increased sensitivity to ionizing radiations. Mutations in the tumor suppressor gene PTCH1, which is part of the Sonic Hedgehog (SHH) signaling pathway, are responsible for these clinical manifestations. As several genetic mutations in the DNA repair genes are responsible of photo or radiosensitivity and high predisposition to cancers, we hypothesized that these effects in Gorlin syndrome might be due to a defect in the DNA damage response (DDR) and/or the DNA repair capacities. Therefore, the objective of this work was to investigate the sensitivity of skin fibroblasts from NBCCS patients to different DNA damaging agents and to determine the ability of these agents to modulate the DNA repair capacities. Gorlin fibroblasts showed high radiosensitivity and also less resistance to oxidative stress-inducing agents when compared to control fibroblasts obtained from healthy individuals. Gorlin fibroblasts harboring PTCH1 mutations were more sensitive to the exposure to ionizing radiation and to UVA. However, no difference in cell viability was shown after exposure to UVB or bleomycin. As BER is responsible for the repair of oxidative DNA damage, we decided to assess the BER pathway efficacy in Gorlin fibroblasts. Interestingly, a concomitant decrease of both BER gene expression and BER protein activity was observed in Gorlin fibroblasts when compared to control. Our results suggest that low levels of DNA repair within Gorlin cells may lead to an accumulation of oxidative DNA damage that could participate and partly explain the radiosensitivity and the BCC-prone phenotype in Gorlin syndrome.

18.
Nanomaterials (Basel) ; 11(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383962

RESUMO

Reliable and predictive in vitro assays for hazard assessments of manufactured nanomaterials (MNMs) are still limited. Specifically, exposure systems which more realistically recapitulate the physiological conditions in the lung are needed to predict pulmonary toxicity. To this end, air-liquid interface (ALI) systems have been developed in recent years which might be better suited than conventional submerged exposure assays. However, there is still a need for rigorous side-by-side comparisons of the results obtained with the two different exposure methods considering numerous parameters, such as different MNMs, cell culture models and read outs. In this study, human A549 lung epithelial cells and differentiated THP-1 macrophages were exposed under submerged conditions to two abundant types of MNMs i.e., ceria and titania nanoparticles (NPs). Membrane integrity, metabolic activity as well as pro-inflammatory responses were recorded. For comparison, A549 monocultures were also exposed at the ALI to the same MNMs. In the case of titania NPs, genotoxicity was also investigated. In general, cells were more sensitive at the ALI compared to under classical submerged conditions. Whereas ceria NPs triggered only moderate effects, titania NPs clearly initiated cytotoxicity, pro-inflammatory gene expression and genotoxicity. Interestingly, low doses of NPs deposited at the ALI were sufficient to drive adverse outcomes, as also documented in rodent experiments. Therefore, further development of ALI systems seems promising to refine, reduce or even replace acute pulmonary toxicity studies in animals.

19.
Arch Toxicol ; 94(2): 495-507, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31848665

RESUMO

Cutaneous exposure to carcinogenic polycyclic aromatic hydrocarbons (PAH) occurs frequently in the industrialized workplace. In the present study, we addressed this topic in a series of experiments using human skin explants and organic extracts of relevant industrial products. PAH mixtures were applied topically in volumes containing either 10 or 1 nmol B[a]P. We first observed that although mixtures were very efficient at inducing expression of CYP450 1A1, 1A2, and 1B1, formation of adducts of PAH metabolites to DNA, like those of benzo[a]pyrene diol epoxide (BPDE), was drastically reduced as the complexity of the surrounding matrix increased. Interestingly, observation of a nonlinear, dose-dependent response with the least complex mixture suggested the existence of a threshold for this inhibitory effect. We then investigated the impact of simulated sunlight (SSL) on the effects of PAH in skin. SSL was found to decrease the expression of CYP450 genes when applied either after or more efficiently before PAH treatment. Accordingly, the level of DNA-BPDE adducts was reduced in skin samples exposed to both PAH and SSL. The main conclusion of our work is that both increasing chemical complexity of the mixtures and co-exposure to UV radiation decreased the production of adducts between DNA and PAH metabolites. Such results must be taken into account in risk management.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Adutos de DNA/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pele/efeitos dos fármacos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Benzo(a)pireno/farmacocinética , Benzo(a)pireno/toxicidade , Misturas Complexas/toxicidade , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inativação Metabólica/genética , Testes de Mutagenicidade/métodos , Técnicas de Cultura de Órgãos/métodos , Pele/metabolismo , Luz Solar
20.
J Appl Toxicol ; 40(5): 643-654, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31875995

RESUMO

Bisphenol A (BPA) is a well-known endocrine disruptor and it is widely used mainly in the plastics industry. Due to recent reports on its possible impact on health (particularly on the male reproductive system), bisphenol F (BPF) and bisphenol S (BPS) are now being used as alternatives. In this study, RWPE-1 cells were used as a model to compare cytotoxicity, oxidative stress-causing potential and genotoxicity of these chemicals. In addition, the effects of the bisphenol derivatives were assessed on DNA repair proteins. RWPE-1 cells were incubated with BPA, BPF, and BPS at concentrations of 0-600 µM for 24 h. The inhibitory concentration 20 (IC20 , concentration that causes 20% of cell viability loss) values for BPA, BPF, and BPS were 45, 65, and 108 µM, respectively. These results indicated that cytotoxicity potentials were ranked as BPA > BPF > BPS. We also found alterations in superoxide dismutase, glutathione peroxidase and glutathione reductase activities, and glutathione and total antioxidant capacity in all bisphenol-exposed groups. In the standard and modified Comet assay, BPS produced significantly higher levels of DNA damage vs the control. DNA repair proteins (OGG1, Ape-1, and MyH) involved in the base excision repair pathway, as well as p53 protein levels were down-regulated in all of the bisphenol-exposed groups. We found that the BPA alternatives were also cytotoxic and genotoxic, and changed the expressions of DNA repair enzymes. Therefore, further studies are needed to assess whether they can be used safely as alternatives to BPA or not.


Assuntos
Compostos Benzidrílicos/toxicidade , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Células Epiteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/toxicidade , Próstata/efeitos dos fármacos , Sulfonas/toxicidade , Antioxidantes/metabolismo , Linhagem Celular , Ensaio Cometa , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Próstata/metabolismo , Próstata/patologia , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...