Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 330(2): 109-117, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29504672

RESUMO

Ants evolved about 140 million years ago and have diversified into more than 15,000 species with tremendous ecological and morphological diversity, yet evolution of the gene regulatory networks (GRNs) underlying this diversification remains poorly understood. Wing polyphenism, the ability of a single genome to produce either winged or wingless castes during development in response to environmental cues, is a nearly universal feature of ants. The underlying wing GRN is evolutionarily labile in worker castes of phylogenetically derived species: it is conserved in winged castes but interrupted at different points in wingless castes of different species. However, it remains unknown whether the wing GRN is interrupted in wingless castes of species from early branching lineages, and if so, whether it is interrupted at similar locations in worker castes of derived species. We therefore used in situ hybridization to assay the expression of nine genes in the wing GRN in wing imaginal discs of larvae from two species from the early branching ('basal') genus Mystrium. These species possess two castes each: Mystrium rogeri has winged queens and wingless workers, and M. oberthueri has wingless queens and wingless workers. In contrast to derived species, we found no evidence of interruption points in the wing GRN kernel of wingless castes. Our finding supports: (1) a "phylogenetic ladder model" of wing GRN evolution, where interruption points move further upstream in the wing GRN as ant lineages become more derived; and (2) that evolutionary lability of the GRN underlying wing polyphenism originated later during ant evolution.


Assuntos
Formigas/genética , Formigas/fisiologia , Evolução Biológica , Redes Reguladoras de Genes , Asas de Animais/anatomia & histologia , Animais , Formigas/anatomia & histologia , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento
2.
Development ; 144(10): 1841-1850, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28360132

RESUMO

Smoothened (SMO) is a G-protein-coupled receptor-related protein required for the transduction of Hedgehog (HH). The HH gradient leads to graded phosphorylation of SMO, mainly by the PKA and CKI kinases. How thresholds in HH morphogen regulate SMO to promote switch-like transcriptional responses is a central unsolved issue. Using the wing imaginal disc model in Drosophila, we identified new SMO phosphosites that enhance the effects of the PKA/CKI kinases on SMO accumulation, its localization at the plasma membrane and its activity. Surprisingly, phosphorylation at these sites is induced by the kinase Fused (FU), a known downstream effector of SMO. In turn, activation of SMO induces FU to act on its downstream targets. Overall, our data provide evidence for a SMO/FU positive regulatory loop nested within a multikinase phosphorylation cascade. We propose that this complex interplay amplifies signaling above a threshold that allows high HH signaling.


Assuntos
Caseína Quinase I/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Hedgehog/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Receptor Smoothened/metabolismo , Animais , Animais Geneticamente Modificados , Caseína Quinase I/genética , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais , Receptor Smoothened/genética , Asas de Animais/embriologia , Asas de Animais/metabolismo
3.
Mol Biol Evol ; 33(3): 679-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26560352

RESUMO

Prdm genes encode transcription factors with a subtype of SET domain known as the PRDF1-RIZ (PR) homology domain and a variable number of zinc finger motifs. These genes are involved in a wide variety of functions during animal development. As most Prdm genes have been studied in vertebrates, especially in mice, little is known about the evolution of this gene family. We searched for Prdm genes in the fully sequenced genomes of 93 different species representative of all the main metazoan lineages. A total of 976 Prdm genes were identified in these species. The number of Prdm genes per species ranges from 2 to 19. To better understand how the Prdm gene family has evolved in metazoans, we performed phylogenetic analyses using this large set of identified Prdm genes. These analyses allowed us to define 14 different subfamilies of Prdm genes and to establish, through ancestral state reconstruction, that 11 of them are ancestral to bilaterian animals. Three additional subfamilies were acquired during early vertebrate evolution (Prdm5, Prdm11, and Prdm17). Several gene duplication and gene loss events were identified and mapped onto the metazoan phylogenetic tree. By studying a large number of nonmetazoan genomes, we confirmed that Prdm genes likely constitute a metazoan-specific gene family. Our data also suggest that Prdm genes originated before the diversification of animals through the association of a single ancestral SET domain encoding gene with one or several zinc finger encoding genes.


Assuntos
Evolução Molecular , Genômica , Fatores de Transcrição/genética , Dedos de Zinco/genética , Motivos de Aminoácidos , Animais , Duplicação Gênica , Genoma , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Família Multigênica , Filogenia , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química
4.
Dev Biol ; 382(1): 246-67, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891818

RESUMO

Like most bilaterian animals, the annelid Platynereis dumerilii generates the majority of its body axis in an anterior to posterior temporal progression with new segments added sequentially. This process relies on a posterior subterminal proliferative body region, known as the "segment addition zone" (SAZ). We explored some of the molecular and cellular aspects of posterior elongation in Platynereis, in particular to test the hypothesis that the SAZ contains a specific set of stem cells dedicated to posterior elongation. We cloned and characterized the developmental expression patterns of orthologs of 17 genes known to be involved in the formation, behavior, or maintenance of stem cells in other metazoan models. These genes encode RNA-binding proteins (e.g., tudor, musashi, pumilio) or transcription factors (e.g., myc, id, runx) widely conserved in eumetazoans. Most of these genes are expressed both in the migrating primordial germ cells and in overlapping ring-like patterns in the SAZ, similar to some previously analyzed genes (piwi, vasa). The SAZ patterns are coincident with the expression of proliferation markers cyclin B and PCNA. EdU pulse and chase experiments suggest that new segments are produced through many rounds of divisions from small populations of teloblast-like posterior stem cells. The shared molecular signature between primordial germ cells and posterior stem cells in Platynereis thus corresponds to an ancestral "stemness" program.


Assuntos
Anelídeos/citologia , Anelídeos/crescimento & desenvolvimento , Células Germinativas/citologia , Células-Tronco/citologia , Animais , Anelídeos/genética , Movimento Celular/genética , Proliferação de Células , Ectoderma/citologia , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Regeneração , Células-Tronco/metabolismo
5.
Science ; 329(5989): 339-42, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20647470

RESUMO

Annelids and arthropods share a similar segmented organization of the body whose evolutionary origin remains unclear. The Hedgehog signaling pathway, prominent in arthropod embryonic segment patterning, has not been shown to have a similar function outside arthropods. We show that the ligand Hedgehog, the receptor Patched, and the transcription factor Gli are all expressed in striped patterns before the morphological appearance of segments in the annelid Platynereis dumerilii. Treatments with small molecules antagonistic to Hedgehog signaling disrupt segment formation. Platynereis Hedgehog is not necessary to establish early segment patterns but is required to maintain them. The molecular similarity of segment patterning functions of the Hedgehog pathway in an annelid and in arthropods supports a common origin of segmentation in protostomes.


Assuntos
Proteínas Hedgehog/metabolismo , Poliquetos/crescimento & desenvolvimento , Poliquetos/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Artrópodes/embriologia , Artrópodes/genética , Artrópodes/crescimento & desenvolvimento , Artrópodes/metabolismo , Evolução Biológica , Padronização Corporal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica , Dados de Sequência Molecular , Receptores Patched , Filogenia , Piperazinas/farmacologia , Poliquetos/anatomia & histologia , Poliquetos/genética , Pirazóis/farmacologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Alcaloides de Veratrum/farmacologia
6.
BMC Evol Biol ; 9: 94, 2009 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-19426549

RESUMO

BACKGROUND: An important issue concerning the evolution of duplicated genes is to understand why paralogous genes are retained in a genome even though the most likely fate for a redundant duplicated gene is nonfunctionalization and thereby its elimination. Here we study a complex superfamily generated by gene duplications, the snail related genes that play key roles during animal development. We investigate the evolutionary history of these genes by genomic, phylogenetic, and expression data studies. RESULTS: We systematically retrieved the full complement of snail related genes in several sequenced genomes. Through phylogenetic analysis, we found that the snail superfamily is composed of three ancestral families, snail, scratchA and scratchB. Analyses of the organization of the encoded proteins point out specific molecular signatures, indicative of functional specificities for Snail, ScratchA and ScratchB proteins. We also report the presence of two snail genes in the annelid Platynereis dumerilii, which have distinct expression patterns in the developing mesoderm, nervous system, and foregut. The combined expression of these two genes is identical to that of two independently duplicated snail genes in another annelid, Capitella spI, but different aspects of the expression patterns are differentially shared among paralogs of Platynereis and Capitella. CONCLUSION: Our study indicates that the snail and scratchB families have expanded through multiple independent gene duplications in the different bilaterian lineages, and highlights potential functional diversifications of Snail and ScratchB proteins following duplications, as, in several instances, paralogous proteins in a given species show different domain organizations. Comparisons of the expression pattern domains of the two Platynereis and Capitella snail paralogs provide evidence for independent subfunctionalization events which have occurred in these two species. We propose that the snail related genes may be especially prone to subfunctionalization, and this would explain why the snail superfamily underwent so many independent duplications leading to maintenance of functional paralogs.


Assuntos
Anelídeos/genética , Evolução Molecular , Família Multigênica , Filogenia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sequência Conservada , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição da Família Snail
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...