Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 89(22): 12602-12608, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29087687

RESUMO

Chitosans, ß-1,4-linked partially N-acetylated linear polyglucosamines, are very versatile and promising functional biopolymers. Understanding their structure-function relationships requires sensitive and accurate structural analyses to determine parameters like degree of polymerization (DP), fraction of acetylation (FA), or pattern of acetylation (PA). NMR, the gold standard for FA analysis, requires large amounts of sample. Here, we describe an enzymatic/mass spectrometric fingerprinting method to analyze the FA of chitosan polymers. The method combines the use of chitinosanase, a sequence-specific hydrolase that cleaves chitosan polymers into oligomeric fingerprints, ultrahigh-performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS), and partial least-squares regression (PLSR). We also developed a technique to simulate enzymatic fingerprints in silico that were used to build the PLS models for FA determination. Overall, we found our method to be as accurate as NMR while at the same time requiring only microgram amounts of sample. Thus, the method represents a powerful technique for chitosan analysis.


Assuntos
Quitinases/metabolismo , Quitosana/análise , Quitosana/metabolismo , Simulação de Dinâmica Molecular , Cromatografia Líquida de Alta Pressão , Hidrólise , Análise dos Mínimos Quadrados , Análise de Componente Principal , Espectrometria de Massas por Ionização por Electrospray
2.
Carbohydr Polym ; 174: 1121-1128, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821036

RESUMO

The biological activities of partially acetylated chitosan oligosaccharides (paCOS) depend on their degree of polymerization (DP), fraction of acetylation (FA), and potentially their pattern of acetylation (PA). Therefore, analyzing structure-function relationships require fully defined paCOS, but these are currently unavailable. A promising approach for obtaining at least partially defined paCOS is using chitosanolytic enzymes. Here we purified and characterized a novel chitosan-hydrolyzing enzyme from the fungus Alternaria alternata possessing an absolute cleavage specificity, yielding fully defined paCOS. It cleaves specifically after GlcN-GlcNAc pairs and is most active towards moderately acetylated chitosans, but shows no activity against fully acetylated or fully deacetylated substrates. These unique properties match neither those of chitinases nor chitosanases. Therefore, the enzyme represents the first member of a new class of chitosanolytic enzymes that will allow for the production of fully defined paCOS. Additionally, it represents a highly valuable tool for fingerprinting analyses of chitosan polymers.


Assuntos
Alternaria/enzimologia , Quitinases/metabolismo , Quitosana/metabolismo , Acetilação , Oligossacarídeos , Polimerização
3.
J Biol Chem ; 289(35): 24289-303, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25002587

RESUMO

Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973-25982). We hypothesized that sulfatases are instrumental for this bacterium, and related Bacteroides species, to metabolize highly sulfated glycans (i.e. mucins and glycosaminoglycans (GAGs)) and to colonize the intestinal mucosal layer. Based on our previous study, we investigated 10 sulfatase genes induced in the presence of host glycans. Biochemical characterization of these potential sulfatases allowed the identification of GAG-specific sulfatases selective for the type of saccharide residue and the attachment position of the sulfate group. Although some GAG-specific bacterial sulfatase activities have been described in the literature, we report here for the first time the identity and the biochemical characterization of four GAG-specific sulfatases. Furthermore, contrary to the current paradigm, we discovered that B. thetaiotaomicron possesses an authentic GAG endosulfatase that is active at the polymer level. This type of sulfatase is the first one to be identified in a bacterium. Our study thus demonstrates that bacteria have evolved more sophisticated and diverse GAG sulfatases than anticipated and establishes how B. thetaiotaomicron, and other major human commensal bacteria, can metabolize and potentially tailor complex host glycans.


Assuntos
Bacteroides/enzimologia , Glicosaminoglicanos/metabolismo , Sulfatases/metabolismo , Simbiose , Sequência de Bases , Sequência de Carboidratos , Primers do DNA , Glicosaminoglicanos/química , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular
4.
Plant Cell Environ ; 35(7): 1258-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22292537

RESUMO

Phloem sieve elements are highly differentiated cells involved in the long-distance transport of photoassimilates. These cells contain both aggregated phloem-proteins (P-proteins) and soluble proteins, which are also translocated by mass flow. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to carry out a proteomic survey of the phloem exudate of Arabidopsis thaliana, collected by the ethylenediaminetetraacetic acid (EDTA)-facilitated method. We identified 287 proteins, a large proportion of which were enzymes involved in the metabolic precursor generation and amino acid synthesis, suggesting that sieve tubes display high levels of metabolic activity. RNA-binding proteins, defence proteins and lectins were also found. No putative P-proteins were detected in the EDTA-exudate fraction, indicating a lack of long-distance translocation of such proteins in Arabidopsis. In parallel, we investigated the organization of P-proteins, by high-resolution transmission electron microscopy, and the localization of the phloem lectin PP2, a putative P-protein component, by immunolocalization with antibodies against PP2-A1. Transmission electron microscopy observations of P-proteins revealed bundles of filaments resembling strings of beads. PP2-A1 was found weakly associated with these structures in the sieve elements and bound to plastids. These observations suggest that PP2-A1 is anchored to P-proteins and organelles rather than being a structural component of P-proteins.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/metabolismo , Floema/metabolismo , Proteoma/análise , Proteínas de Arabidopsis/ultraestrutura , Cromatografia Líquida , Microscopia Eletrônica de Transmissão , Floema/ultraestrutura , Exsudatos de Plantas/análise , Lectinas de Plantas/análise , Plastídeos/ultraestrutura , Proteômica , Espectrometria de Massas em Tandem
5.
Plant Physiol ; 153(3): 1345-61, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20442276

RESUMO

Phloem Protein2 (PP2) is a component of the phloem protein bodies found in sieve elements. We describe here the lectin properties of the Arabidopsis (Arabidopsis thaliana) PP2-A1. Using a recombinant protein produced in Escherichia coli, we demonstrated binding to N-acetylglucosamine oligomers. Glycan array screening showed that PP2-A1 also bound to high-mannose N-glycans and 9-acyl-N-acetylneuraminic sialic acid. Fluorescence spectroscopy-based titration experiments revealed that PP2-A1 had two classes of binding site for N,N',N''-triacetylchitotriose, a low-affinity site and a high-affinity site, promoting the formation of protein dimers. A search for structural similarities revealed that PP2-A1 aligned with the Cbm4 and Cbm22-2 carbohydrate-binding modules, leading to the prediction of a beta-strand structure for its conserved domain. We investigated whether PP2-A1 interacted with phloem sap glycoproteins by first characterizing abundant Arabidopsis phloem sap proteins by liquid chromatography-tandem mass spectrometry. Then we demonstrated that PP2-A1 bound to several phloem sap proteins and that this binding was not completely abolished by glycosidase treatment. As many plant lectins have insecticidal activity, we also assessed the effect of PP2-A1 on weight gain and survival in aphids. Unlike other mannose-binding lectins, when added to an artificial diet, recombinant PP2-A1 had no insecticidal properties against Acyrthosiphon pisum and Myzus persicae. However, at mid-range concentrations, the protein affected weight gain in insect nymphs. These results indicate the presence in PP2-A1 of several carbohydrate-binding sites, with potentially different functions in the trafficking of endogenous proteins or in interactions with phloem-feeding insects.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Manose/metabolismo , Lectinas de Plantas/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Afídeos/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sítios de Ligação , Sequência de Carboidratos , Quitina/metabolismo , Cromatografia de Afinidade , Histidina/metabolismo , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/metabolismo , Oligopeptídeos/metabolismo , Exsudatos de Plantas/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/genética , Polissacarídeos/química , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície
6.
Trends Plant Sci ; 13(6): 273-80, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18485789

RESUMO

Phloem is the major route for transport of carbohydrates, amino acids, and other nutrients from source to sink tissues. Hormones, mRNAs, small RNAs and proteins also are transported by the phloem, and potentially play pivotal roles in communication between organs to coordinate plant development and physiology. A comprehensive understanding of the mechanisms involved in phloem transport and signalling is still lacking. Recent transcript profiling in several plant species has provided new insights to phloem-specialized functions. Here, we review conclusions regarding the unique functions of the phloem and discuss putative roles for mRNAs and small RNA species in long-distance signalling.


Assuntos
Perfilação da Expressão Gênica , Floema/metabolismo , RNA Mensageiro/metabolismo , Morte Celular , Polaridade Celular , Parede Celular/metabolismo , Citoesqueleto/metabolismo , Ácidos Indolacéticos/metabolismo , Floema/citologia , Floema/crescimento & desenvolvimento , RNA de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...