Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 749: 141463, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32827830

RESUMO

Arctic regions contain large amounts of organic carbon (OC) trapped in soil and wetland permafrost. With climate warming, part of this OC is released to aquatic systems and degraded by microorganisms, thus resulting in positive feedback due to carbon (C) emission. In wetland areas, water bodies are spatially heterogenic and separated by landscape position and water residence time. This represents a hydrological continuum, from depressions, smaller water bodies and lakes to the receiving streams and rivers. Yet, the effect of this heterogeneity on the OC release from the soil and its processing in waters is largely unknown and not accounted for in C cycle models of Arctic regions. Here we investigated the dissolved OC (DOC) biodegradation of aquatic systems along a hydrological continuum located in two discontinuous permafrost sites: in western Siberia and northern Sweden. The biodegradable dissolved OC (BDOC15; % DOC lost relative to the initial DOC concentration after 15 days incubation at 20 °C) ranged from 0 to 20% for small water bodies located at the beginning of the continuum (soil solutions, small ponds, fen and lakes) and from 10 to 20% for streams and rivers. While the BDOC15 increased, the removal rate of DOC decreased along the hydrological continuum. The potential maximum CO2 production from DOC biodegradation was estimated to account for only a small part of in-situ CO2 emissions measured in peatland aquatic systems of northern Sweden and western Siberia. This suggests that other sources, such as sediment respiration and soil input, largely contribute to CO2 emissions from small surface waters of permafrost peatlands. Our results highlight the need to account for large heterogeneity of dissolved OC concentration and biodegradability in order to quantify C cycling in arctic water bodies susceptible to permafrost thaw.


Assuntos
Pergelissolo , Regiões Árticas , Carbono/análise , Sibéria , Suécia
2.
Sci Total Environ ; 737: 139671, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521361

RESUMO

Despite the importance of surface waters of permafrost landscapes in carbon (C) emission and dissolved C and metal storage and export, the majority of available observations in high latitude aquatic systems deal with punctual or seasonal sampling without accounting for diurnal variations in temperature and primary productivity-respiration cycles. Towards providing comprehensive understanding of diel variations in CO2 emission, organic C and element concentrations in lakes of frozen peatlands, we monitored, each 2 h over 2 days, the water temperature, pH, CO2 fluxes, CO2, CH4, dissolved organic and inorganic carbon (DOC and DIC, respectively), nutrients, carboxylic acids, bacterial number, and major and trace elements in two acidic (pH = 3.6 and 4.0) and humic (DOC = 15 and 35 mg L-1) thermokarst lakes of discontinuous permafrost zone in Western Siberia. We discovered a factor of 2 to 3 higher CO2 concentrations and fluxes during the night compared to daytime in the high-DOC lake. The emission fluxes in the low-DOC lake increased from zero to negative values during the day to highly positive values during the end of night and early morning. The methane concentration varied within a factor of 5 without any link to the diurnal cycle. The bulk of dissolved (< 0.45 µm) hydrochemical parameters remained highly stable with ±10% variation in concentration over 2 days of observation (DOC, DIC, SUVA254nm, carboxylates (formate, oxalate, puryvate and glutarate), Mn, Fe, Al, other trace elements). Concentrations of Si, P, K, Cu varied within ±20% whereas those of Zn and Ni ranged by a factor of 2 to 4 without any link to diurnal pattern. Overall, the impact of diel cycle on CH4, DOC, nutrient and metal concentration was below 10%. However, neglecting night-time period may underestimate net CO2 emission by ca. 30 to 50% in small organic-rich thaw ponds and switch the CO2 exchange from uptake/zero to net emission in larger thermokarst lakes. Given the dominance of large lakes in permafrost regions, the global underestimation of the emission flux may be quite high. As such, monitoring CO2 concentrations and fluxes in thermokarst lakes during months of extended night time (August to October) is mandatory for assessing the net emissions from lentic waters of frozen peatlands.

3.
Langmuir ; 20(12): 4954-69, 2004 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15984256

RESUMO

A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA