Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20247874

RESUMO

Rapid nucleic acid testing is a critical component of a robust infrastructure for increased disease surveillance. Here, we report a microfluidic platform for point-of-care, CRISPR-based molecular diagnostics. We first developed a nucleic acid test which pairs distinct mechanisms of DNA and RNA amplification optimized for high sensitivity and rapid kinetics, linked to Cas13 detection for specificity. We combined this workflow with an extraction-free sample lysis protocol using shelf-stable reagents that are widely available at low cost, and a multiplexed human gene control for calling negative test results. As a proof-of-concept, we demonstrate sensitivity down to 40 copies/L of SARS-CoV-2 in unextracted saliva within 35 minutes, and validated the test on total RNA extracted from patient nasal swabs with a range of qPCR Ct values from 13-35. To enable sample-to-answer testing, we integrated this diagnostic reaction with a single-use, gravity-driven microfluidic cartridge followed by real-time fluorescent detection in a compact companion instrument. We envision this approach for Diagnostics with Coronavirus Enzymatic Reporting (DISCoVER) will incentivize frequent, fast, and easy testing.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-423869

RESUMO

Despite global efforts, there are no effective FDA-approved medicines for the treatment of SARS-CoV-2 infection. Potential therapeutics focus on repurposed drugs, some with cardiac liabilities. Here we report on a preclinical drug screening platform, a cardiac microphysiological system (MPS), to assess cardiotoxicity associated with hydroxychloroquine (HCQ) and azithromycin (AZM) polytherapy in a mock clinical trial. The MPS contained human heart muscle derived from patient-specific induced pluripotent stem cells. The effect of drug response was measured using outputs that correlate with clinical measurements such as QT interval (action potential duration) and drug-biomarker pairing. Chronic exposure to HCQ alone elicited early afterdepolarizations (EADs) and increased QT interval from day 6 onwards. AZM alone elicited an increase in QT interval from day 7 onwards and arrhythmias were observed at days 8 and 10. Monotherapy results closely mimicked clinical trial outcomes. Upon chronic exposure to HCQ and AZM polytherapy, we observed an increase in QT interval on days 4-8.. Interestingly, a decrease in arrhythmias and instabilities was observed in polytherapy relative to monotherapy, in concordance with published clinical trials. Furthermore, biomarkers, most of them measurable in patients serum, were identified for negative effects of single drug or polytherapy on tissue contractile function, morphology, and antioxidant protection. The cardiac MPS can predict clinical arrhythmias associated with QT prolongation and rhythm instabilities. This high content system can help clinicians design their trials, rapidly project cardiac outcomes, and define new monitoring biomarkers to accelerate access of patients to safe COVID-19 therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...