Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 2: 270, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21468022

RESUMO

Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca(2+) activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca(2+), AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing.


Assuntos
Anexina A5/química , Anexina A5/metabolismo , Membrana Celular/fisiologia , Cicatrização , Animais , Anexina A5/genética , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/genética , Camundongos , Camundongos Knockout
2.
J Struct Biol ; 168(1): 107-16, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19306927

RESUMO

Annexins are soluble proteins that bind to biological membranes in a Ca(2+)-dependent manner. Annexin-A6 (AnxA6) is unique in the annexin family as it consists of the repeat of two annexin core modules, while all other annexins consist of a single module. AnxA6 has been proposed to participate in various membrane-related processes, including endocytosis and exocytosis, yet the molecular mechanism of association of AnxA6 with biological membranes, especially its ability to aggregate membranes, is still unclear. To address this question, we studied the association of AnxA6 with model phospholipid membranes by combining the techniques of quartz crystal microbalance with dissipation monitoring (QCM-D), (cryo-) transmission electron microscopy (TEM) and atomic force microscopy (AFM). The properties of membrane binding and membrane aggregation of AnxA6 were compared to two reference systems, annexin A5 (AnxA5), which is the annexin prototype, and a chimerical AnxA5-dimer molecule, which is able to aggregate two membranes in a symmetrical manner. We show that AnxA6 presents two modes of association with lipid membranes depending on Ca(2+)-concentration. At low Ca(2+)-concentration ( approximately 60-150microM), AnxA6 binds to membranes via its two coplanar annexin modules and is not able to associate two separate membranes. At high Ca(2+)-concentration ( approximately 2mM), AnxA6 molecules are able to bind two adjacent phospholipid membranes and present a conformation similar to the AnxA6 3D crystallographic structure. Possible biological implications of these novel membrane-binding properties of AnxA6 are discussed.


Assuntos
Anexina A6/metabolismo , Microscopia Crioeletrônica/métodos , Membranas Artificiais , Microscopia de Força Atômica/métodos , Fosfolipídeos/química , Proteínas Recombinantes/metabolismo , Anexina A5/genética , Anexina A5/metabolismo , Anexina A5/ultraestrutura , Anexina A6/genética , Anexina A6/ultraestrutura , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura
3.
Biointerphases ; 2(4): 165-72, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20408654

RESUMO

Understanding and controlling cell adhesion to biomaterials and synthetic materials are important issues in basic research and applied sciences. Supported lipid bilayers (SLBs) functionalized with cell adhesion peptides linked to lipid molecules are popular platforms of cell adhesion. In this paper, an alternative approach of peptide presentation is presented in which peptides are stereo-selectively linked to proteins self-assembling in a rigid two-dimensional (2D) matrix on SLBs. Annexin-A5 (Anx5) was used as prototype protein for its known properties of forming stable and rigid 2D matrices on lipid surfaces. Two types of Anx5-peptide complexes, containing either a RGD or an IKVAV sequence, were synthesized. The authors show that both Anx5-peptide complexes present the same properties of binding and 2D organization on lipid surfaces as Anx5, when investigated by quartz crystal microbalance with dissipation monitoring, atomic force microscopy, and transmission electron microscopy techniques. Anx5-RGD and Anx5-IKVAV 2D matrices were found to promote specific adhesion of human saphenous vein endothelial cells and mouse embryonic stem cells, respectively. The influence of the surface density of exposed peptides on cell adhesion was investigated, showing that cells attach to Anx5-peptide matrices when the average distance between peptides is smaller than about 60 nm. This cell adhesion platform provides control of the orientation and density of cell ligands, opening interesting possibilities for future applications.

4.
Langmuir ; 22(8): 3497-505, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16584220

RESUMO

Supported lipid bilayers (SLBs) are popular models of cell membranes with potential bio-technological applications. A qualitative understanding of the process of SLB formation after exposure of small lipid vesicles to a hydrophilic support is now emerging. Recent studies have revealed a stunning variety of effects that can take place during this self-organization process. The ensemble of results in our group has revealed unprecedented insight into intermediates of the SLB-formation process and has helped to identify a number of parameters that are determinant for the lipid deposition on solid supports. The pathway of lipid deposition can be tuned by electrostatic interactions and by the presence of calcium. We emphasize the importance of the solid support in the SLB-formation process. Our results suggest that the molecular-level interaction between lipids and the solid support needs to be considered explicitly, to understand the rupture of vesicles and the formation of SLBs as well as to predict the properties of the resulting SLB. The impact of the SLB-formation process on the quality and the physical properties of the resulting SLB as well as implications for other types of surface-confined lipid bilayers are discussed.


Assuntos
Cálcio/química , Bicamadas Lipídicas/química , Adsorção , Biofísica/métodos , Membrana Celular/metabolismo , Lipídeos/química , Fluidez de Membrana , Microscopia de Força Atômica , Modelos Químicos , Fosfatidilcolinas/química , Eletricidade Estática , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...