Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 56(3): 515-529, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28825200

RESUMO

Selective internal radiation therapy (SIRT) using Yttrium-90 loaded glass microspheres injected in the hepatic artery is an emerging, minimally invasive therapy of liver cancer. A personalized intervention can lead to high concentration dose in the tumor, while sparing the surrounding parenchyma. We propose a computational model for patient-specific simulation of entire hepatic arterial tree, based on liver, tumors, and arteries segmentation on patient's tomography. Segmentation of hepatic arteries down to a diameter of 0.5 mm is semi-automatically performed on 3D cone-beam CT angiography. The liver and tumors are extracted from CT-scan at portal phase by an active surface method. Once the images are registered through an automatic multimodal registration, extracted data are used to initialize a numerical model simulating liver vascular network. The model creates successive bifurcations from given principal vessels, observing Poiseuille's and matter conservation laws. Simulations provide a coherent reconstruction of global hepatic arterial tree until vessel diameter of 0.05 mm. Microspheres distribution under simple hypotheses is also quantified, depending on injection site. The patient-specific character of this model may allow a personalized numerical approximation of microspheres final distribution, opening the way to clinical optimization of catheter placement for tumor targeting.


Assuntos
Artéria Hepática/efeitos da radiação , Neoplasias Hepáticas/radioterapia , Microesferas , Modelos Biológicos , Angiografia , Automação , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico , Artéria Hepática/diagnóstico por imagem , Artéria Hepática/patologia , Humanos , Processamento de Imagem Assistida por Computador , Fígado/anatomia & histologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Reprodutibilidade dos Testes
2.
IEEE Trans Med Imaging ; 33(11): 2191-209, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25020068

RESUMO

The paper presents a computational model of magnetic resonance (MR) flow imaging. The model consists of three components. The first component is used to generate complex vascular structures, while the second one provides blood flow characteristics in the generated vascular structures by the lattice Boltzmann method. The third component makes use of the generated vascular structures and flow characteristics to simulate MR flow imaging. To meet computational demands, parallel algorithms are applied in all the components. The proposed approach is verified in three stages. In the first stage, experimental validation is performed by an in vitro phantom. Then, the simulation possibilities of the model are shown. Flow and MR flow imaging in complex vascular structures are presented and evaluated. Finally, the computational performance is tested. Results show that the model is able to reproduce flow behavior in large vascular networks in a relatively short time. Moreover, simulated MR flow images are in accordance with the theoretical considerations and experimental images. The proposed approach is the first such an integrative solution in literature. Moreover, compared to previous works on flow and MR flow imaging, this approach distinguishes itself by its computational efficiency. Such a connection of anatomy, physiology and image formation in a single computer tool could provide an in silico solution to improving our understanding of the processes involved, either considered together or separately.


Assuntos
Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Algoritmos , Simulação por Computador , Hemorreologia , Humanos , Fígado/irrigação sanguínea , Imagens de Fantasmas
3.
MAGMA ; 27(5): 419-24, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24337393

RESUMO

OBJECT: The ability to generate reference signals is of great benefit for quantitation of the magnetic resonance (MR) signal. The aim of the present study was to implement a dedicated experimental set-up to generate MR images of virtual phantoms. MATERIALS AND METHODS: Virtual phantoms of a given shape and signal intensity were designed and the k-space representation was generated. A waveform generator converted the k-space lines into a radiofrequency (RF) signal that was transmitted to the MR scanner bore by a dedicated RF coil. The k-space lines of the virtual phantom were played line-by-line in synchronization with the magnetic resonance imaging data acquisition. RESULTS: Virtual phantoms of complex patterns were reproduced well in MR images without the presence of artifacts. Time-series measurements showed a coefficient of variation below 1% for the signal intensity of the virtual phantoms. An excellent linearity (coefficient of determination r (2) = 0.997 as assessed by linear regression) was observed in the signal intensity of virtual phantoms. CONCLUSION: Virtual phantoms represent an attractive alternative to physical phantoms for providing a reference signal. MR images of virtual phantoms were here generated using a stand-alone, independent unit that can be employed with MR scanners from different vendors.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Interface Usuário-Computador , Valores de Referência , Reprodutibilidade dos Testes
4.
Magn Reson Imaging ; 31(7): 1163-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23711475

RESUMO

In this work, a computational model of magnetic resonance (MR) flow imaging is proposed. The first model component provides fluid dynamics maps by applying the lattice Boltzmann method. The second one uses the flow maps and couples MR imaging (MRI) modeling with a new magnetization transport algorithm based on the Eulerian coordinate approach. MRI modeling is based on the discrete time solution of the Bloch equation by analytical local magnetization transformations (exponential scaling and rotations). Model is validated by comparison of experimental and simulated MR images in two three-dimensional geometries (straight and U-bend tubes) with steady flow under comparable conditions. Two-dimensional geometries, presented in literature, were also tested. In both cases, a good agreement is observed. Quantitative analysis shows in detail the model accuracy. Computational time is noticeably lower to prior works. These results demonstrate that the discrete time solution of Bloch equation coupled with the new magnetization transport algorithm naturally incorporates flow influence in MRI modeling. As a result, in the proposed model, no additional mechanism (unlike in prior works) is needed to consider flow artifacts, which implies its easy extensibility. In combination with its low computational complexity and efficient implementation, the model could have a potential application in study of flow disturbances (in MRI) in various conditions and in different geometries.


Assuntos
Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Velocidade do Fluxo Sanguíneo , Radiação Eletromagnética , Humanos , Hidrodinâmica , Imageamento Tridimensional , Modelos Cardiovasculares , Imagens de Fantasmas , Fluxo Pulsátil , Fatores de Tempo
5.
IEEE Trans Inf Technol Biomed ; 15(4): 668-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21550891

RESUMO

This paper presents two approaches in parallel modeling of vascular system development in internal organs. In the first approach, new parts of tissue are distributed among processors and each processor is responsible for perfusing its assigned parts of tissue to all vascular trees. Communication between processors is accomplished by passing messages, and therefore, this algorithm is perfectly suited for distributed memory architectures. The second approach is designed for shared memory machines. It parallelizes the perfusion process during which individual processing units perform calculations concerning different vascular trees. The experimental results, performed on a computing cluster and multicore machines, show that both algorithms provide a significant speedup.


Assuntos
Algoritmos , Biologia Computacional/métodos , Fígado/irrigação sanguínea , Modelos Cardiovasculares , Adulto , Fenômenos Fisiológicos Cardiovasculares , Simulação por Computador , Artéria Hepática/anatomia & histologia , Veias Hepáticas/anatomia & histologia , Humanos , Fígado/anatomia & histologia
6.
IEEE Trans Med Imaging ; 29(3): 699-707, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19758856

RESUMO

The use of quantitative imaging for the characterization of hepatic tumors in magnetic resonance imaging (MRI) can improve the diagnosis and therefore the treatment of these life-threatening tumors. However, image parameters remain difficult to interpret because they result from a mixture of complex processes related to pathophysiology and to acquisition. These processes occur at variable spatial and temporal scales. We propose a multiscale model of liver dynamic contrast-enhanced (DCE) MRI in order to better understand the tumor complexity in images. Our design couples a model of the organ (tissue and vasculature) with a model of the image acquisition. At the macroscopic scale, vascular trees take a prominent place. Regarding the formation of MRI images, we propose a distributed model of parenchymal biodistribution of extracellular contrast agents. Model parameters can be adapted to simulate the tumor development. The sensitivity of the multiscale model of liver DCE-MRI was studied through observations of the influence of two physiological parameters involved in carcinogenesis (arterial flow and capillary permeability) on its outputs (MRI images at arterial and portal phases). Finally, images were simulated for a set of parameters corresponding to the five stages of hepatocarcinogenesis (from regenerative nodules to poorly differentiated HepatoCellular Carcinoma).


Assuntos
Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/patologia , Meios de Contraste/farmacocinética , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Algoritmos , Permeabilidade Capilar , Simulação por Computador , Veias Hepáticas/anatomia & histologia , Veias Hepáticas/patologia , Compostos Heterocíclicos/farmacocinética , Humanos , Circulação Hepática , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Compostos Organometálicos/farmacocinética
7.
Comput Methods Programs Biomed ; 91(1): 1-12, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18378038

RESUMO

One way of gaining insight into what can be observed in medical images is through physiological modeling. For instance, anatomical and functional modifications occur in the organ during the appearance and the growth of a tumor. Some of these changes concern the vascularization. We propose a computational model of tumor-affected renal circulation that represents the local heterogeneity of different parts of the kidney (cortex, medulla). We present a simulation of vascular modifications related to vessel structure, geometry, density, and blood flow in case of renal cell carcinoma. We also use our model to simulate computed tomography scans of a kidney affected by the renal cell carcinoma, at two acquisition times after injection of a contrast product. This framework, based on a physiological model of the organ and physical model of medical image acquisition, offers an opportunity to help radiologists in their diagnostic tasks. This includes the possibility of linking image descriptors with physiological perturbations and markers of pathological processes.


Assuntos
Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/fisiopatologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/fisiopatologia , Modelos Biológicos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/fisiopatologia , Circulação Renal , Velocidade do Fluxo Sanguíneo , Carcinoma de Células Renais/irrigação sanguínea , Simulação por Computador , Humanos , Neoplasias Renais/irrigação sanguínea , Modelos Anatômicos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-18002934

RESUMO

We coupled our physiological model of the liver, to a MRI simulator (SIMRI) in order to find image markers of the tumor growth. Some pathological modifications related to the development of Hepatocellular carcinoma are simulated (flows, permeability, vascular density). Corresponding images simulated at typical acquisition phases (arterial, portal) are compared to real images. The evolution of some textural features with arterial flow is also presented.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Neoplasias Hepáticas/fisiopatologia , Fígado/fisiopatologia , Imageamento por Ressonância Magnética , Modelos Biológicos , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/diagnóstico por imagem , Humanos , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/diagnóstico por imagem , Sistema Porta/diagnóstico por imagem , Sistema Porta/fisiopatologia , Radiografia
9.
Contrast Media Mol Imaging ; 2(5): 215-28, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17874424

RESUMO

The extraction of physiological parameters by non-invasive imaging techniques such as dynamic magnetic resonance imaging (MRI) or positron emission tomography requires a knowledge of molecular distribution and exchange between microvascularization and extravascular tissues. These phenomena not only depend on the physicochemical characteristics of the injected molecules but also the pathophysiological state of the targeted organ. We developed a five-compartment physiologically based pharmacokinetic model focused on hepatic carcinogenesis and MRI contrast agents. This model includes physical characteristics of the contrast agent, dual specific liver supply, microvessel wall properties and transport parameters that are compatible with hepatocarcinoma development. The evolution of concentrations in the five compartments showed significant differences in the distribution of three molecules (differentiated by their diameters and diffusion coefficients ranging, respectively, from 0.9 to 62 nm and from 68.10(-9) to 47.10(-7) cm(2) s(-1)) in simulated regeneration nodules and dysplastic nodules, as well as in medium- and poorly differentiated hepatocarcinoma. These results are in agreement with known vascular modifications such as arterialization that occur during hepatocarcinogenesis. This model can be used to study the pharmacokinetics of contrast agents and consequently to extract parameters that are characteristic of the tumor development (like permeability), after fitting simulated to in vivo data.


Assuntos
Carcinoma Hepatocelular/irrigação sanguínea , Transformação Celular Neoplásica/metabolismo , Meios de Contraste/farmacocinética , Neoplasias Hepáticas/irrigação sanguínea , Fígado/irrigação sanguínea , Imageamento por Ressonância Magnética , Modelos Biológicos , Neovascularização Patológica/metabolismo , Carcinoma Hepatocelular/metabolismo , Simulação por Computador , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo
10.
IEEE Trans Biomed Eng ; 54(3): 538-42, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17355068

RESUMO

In this paper, we present a two-level physiological model that is able to reflect morphology and function of vascular networks, in clinical images. Our approach results from the combination of a macroscopic model, providing simulation of the growth and pathological modifications of vascular network, and a microvascular model, based on compartmental approach, which simulates blood and contrast medium transfer through capillary walls. The two-level model is applied to generate biphasic computed tomography of hepatocellular carcinoma. A contrast-enhanced sequence of simulated images is acquired, and enhancement curves extracted from normal and tumoral regions are compared to curves obtained from in vivo images. The model offers the potential of finding early indicators of disease in clinical vascular images.


Assuntos
Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/diagnóstico por imagem , Modelos Biológicos , Neovascularização Patológica/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Carcinoma Hepatocelular/fisiopatologia , Simulação por Computador , Humanos , Neoplasias Hepáticas/fisiopatologia , Neovascularização Patológica/fisiopatologia , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/métodos
11.
IEEE Trans Med Imaging ; 22(2): 248-57, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12716001

RESUMO

In this paper, a model-based approach to medical image analysis is presented. It is aimed at understanding the influence of the physiological (related to tissue) and physical (related to image modality) processes underlying the image content. This methodology is exemplified by modeling first, the liver and its vascular network, and second, the standard computed tomography (CT) scan acquisition. After a brief survey on vascular modeling literature, a new method, aimed at the generation of growing three-dimensional vascular structures perfusing the tissue, is described. A solution is proposed in order to avoid intersections among vessels belonging to arterial and/or venous trees, which are physiologically connected. Then it is shown how the propagation of contrast material leads to simulate time-dependent sequences of enhanced liver CT slices.


Assuntos
Angiografia/métodos , Vasos Sanguíneos/fisiologia , Imageamento Tridimensional/métodos , Modelos Biológicos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Vasos Sanguíneos/crescimento & desenvolvimento , Hemodinâmica , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Fígado/fisiologia , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Fluxo Sanguíneo Regional
12.
Comput Methods Programs Biomed ; 70(2): 129-36, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12507789

RESUMO

In this short paper, accelerated three-dimensional computer simulations of vascular trees development, preserving physiological and haemodynamic features, are reported. The new computation schemes deal: (i). with the geometrical optimization of each newly created bifurcation; and (ii). with the recalculation of blood pressures and radii of vessels in the whole tree. A significant decrease of the computation time is obtained by replacing the global optimization by the fast updating algorithm allowing more complex structure to be simulated. A comparison between the new algorithms and the previous one is illustrated through the hepatic arterial tree.


Assuntos
Vasos Sanguíneos/anatomia & histologia , Simulação por Computador , Modelos Anatômicos , Modelos Cardiovasculares , Algoritmos , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/fisiologia , Hemodinâmica , Artéria Hepática/anatomia & histologia , Artéria Hepática/crescimento & desenvolvimento , Artéria Hepática/fisiologia , Humanos , Circulação Hepática
13.
Comput Biol Med ; 33(1): 77-89, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12485631

RESUMO

The objective of this study is to show how computational modeling can be used to increase our understanding of liver enhancement in dynamic computer tomography. It relies on two models: (1). a vascular model, based on physiological rules, is used to generate the 3D hepatic vascular network; (2). the physical process of CT acquisition allows to synthesize timed-stamped series of images, aimed at tracking the propagation of a contrast material through the vessel network and the parenchyma. The coupled models are used to simulate the enhancement of a hyper-vascular tumor at different acquisition times, showing a maximum conspicuity during the arterial phase.


Assuntos
Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/diagnóstico por imagem , Fígado/irrigação sanguínea , Algoritmos , Meios de Contraste/administração & dosagem , Humanos , Fígado/diagnóstico por imagem , Modelos Biológicos , Fluxo Sanguíneo Regional , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...