Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 5(5): 1083-1093, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34084985

RESUMO

Atmospheric nitrophenols are pollutants of concern due to their toxicity and light-absorption characteristics and their low reactivity resulting in relatively long residence times in the environment. We investigate multiphase nitrophenol formation from guaiacol in a simulated atmospheric aerosol and support observations with the corresponding chemical mechanisms. The maximal secondary organic aerosol (SOA) yield (42%) is obtained under illumination at 80% relative humidity. Among the identified nitrophenols, 4-nitrocatechol (3.6% yield) is the prevailing species in the particulate phase. The results point to the role of water in catechol and further 4-nitrocatechol formation from guaiacol. In addition, a new pathway of dark nitrophenol formation is suggested, which prevailed in dry air and roughly yielded 1% nitroguaiacols. Furthermore, the proposed mechanism possibly leads to oligomer formation via a phenoxy radical formation by oxidation with HONO.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 218: 178-183, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30991294

RESUMO

Most extinction measurements require a stable light source to attain high precision and accuracy. Here, we present a convenient approach to normalize light source intensity in broadband optical cavity measurements. In the absence of sample extinction, we show that the in-band signal - the high finesse spectral region of the optical cavity in which sample extinction is measured with high sensitivity - is strongly correlated with the out-of-band signal. The out-of-band signal is insensitive to sample extinction and can act as a proxy for light source intensity. This normalization approach strongly suppressed in-band intensity changes in two incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) instruments with dissimilar light sources and optical cavity properties. Intensity fluctuations in an arc lamp system were suppressed by a factor of 7 to 16 and in the LED spectrometer by a factor of 10. This approach therefore improves the accuracy and precision of extinction measurements where either property is limited by the light source stability.

3.
Phys Chem Chem Phys ; 20(16): 10960-10977, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29637953

RESUMO

Monocyclic aromatic compounds are ubiquitous in the polluted troposphere and contribute to the formation of tropospheric ozone and anthropogenic secondary organic aerosol, including brown carbon. Currently available physico-chemical data including aqueous-phase kinetic and mechanistic data, as well as phase-transfer parameters have been compiled and reviewed, to construct a novel aqueous-phase oxidation mechanism for monocyclic aromatic compounds. The performed chemical mechanism development results in a comprehensive aqueous-phase oxidation mechanism (addressed as CAPRAM-AM1.0), which includes 292 processes considering the oxidation of different aromatic compounds. Detailed numerical simulations with the air parcel model SPACCIM are carried out for different urban environmental and seasonal conditions. Results show that the aqueous-phase chemistry of aromatic compounds, particularly in clouds, increases the organic aerosol mass by up to 10% in total. The absolute contribution to aqSOA in summertime is modelled to be 260 ng m-3 and 1.2 µg m-3 under moderate and strongly polluted conditions, respectively. Aqueous-phase oxidations of aromatic compounds are important not only for the degradation, but also for the formation of nitrated aromatic compounds. In-cloud chemistry contributes up to 54% to the nitrocatechol oxidation and up to 37% to its formation under polluted tropospheric conditions. Besides, nitrated aromatic compounds contribute up to 5.4 µg m-3 to modelled brown carbon concentration in cloud droplets and 140 ng m-3 in aerosol particles. Further, the model simulations indicate that besides OH radical oxidations, aromatic compounds with two hydroxyl groups are also strongly oxidised by O3 and HO2. O3 contributes with 49% to 68% and HO2 with 19% to 22% to the aqueous-phase oxidation of catechol under moderate and strong polluted environmental conditions studied.

4.
Environ Sci Technol ; 49(13): 7754-61, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26011767

RESUMO

Very recent studies have reported the existence of highly oxidized multifunctional organic compounds (HOMs) with O/C ratios greater than 0.7. Because of their low vapor pressure, these compounds are often referred as extremely low-volatile organic compounds (ELVOCs), and thus, they are able to contribute significantly to organic mass in tropospheric particles. While HOMs have been successfully detected in the gas phase, their fate after uptake into particles remains unclear to date. Hence, the present study was designed to detect HOMs and related oxidation products in the particle phase and, thus, to shed light on their fate after phase transfer. To this end, aerosol chamber investigations of α-pinene ozonolysis were conducted under near environmental precursor concentrations (2.4 ppb) in a continuous flow reactor. The chemical characterization shows three classes of particle constituents: (1) intact HOMs that contain a carbonyl group, (2) particle-phase decomposition products, and (3) highly oxidized organosulfates (suggested to be addressed as HOOS). Besides chamber studies, HOM formation was also investigated during a measurement campaign conducted in summer 2013 at the TROPOS research station Melpitz. During this field campaign, gas-phase HOM formation was found to be correlated with an increase in the oxidation state of the organic aerosol.


Assuntos
Atmosfera/química , Monoterpenos/química , Compostos Orgânicos Voláteis/análise , Aerossóis/química , Atmosfera/análise , Monoterpenos Bicíclicos , Monitoramento Ambiental/métodos , Oxirredução , Ozônio/química , Compostos Orgânicos Voláteis/química
5.
Environ Sci Technol ; 48(9): 4901-8, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24697354

RESUMO

An oxygenated MW 188 compound is commonly observed in substantial abundance in atmospheric aerosol samples and was proposed in previous studies as an α-pinene-related marker compound that is associated with aging processes. Owing to difficulties in producing this compound in sufficient amounts in laboratory studies and the occurrence of isobaric isomers, a complete assignment for individual MW 188 compounds could not be achieved in these studies. Results from a comprehensive mass spectrometric analysis are presented here to corroborate the proposed structure of the most abundant MW 188 compound as a 2-hydroxyterpenylic acid diastereoisomer with 2R,3R configuration. The application of collision-induced dissociation with liquid chromatography/electrospray ionization-ion trap mass spectrometry in both negative and positive ion modes, as well as chemical derivatization to methyl ester derivatives and analysis by the latter technique and gas chromatography/electron ionization mass spectrometry, enabled a comprehensive characterization of MW 188 isomers, including a detailed study of the fragmentation behavior using both mass spectrometric techniques. Furthermore, a MW 188 positional isomer, 4-hydroxyterpenylic acid, was tentatively identified, which also is of atmospheric relevance as it could be detected in ambient fine aerosol. Quantum chemical calculations were performed to support the diastereoisomeric assignment of the 2-hydroxyterpenylic acid isomers. Results from a time-resolved α-pinene photooxidation experiment show that the 2-hydroxyterpenylic acid 2R,3R diastereoisomer has a time profile distinctly different from that of 3-methyl-1,2,3-butanetricarboxylic acid, a marker for oxygenated (aged) secondary organic aerosol. This study presents a comprehensive chemical data set for a more complete structural characterization of hydroxyterpenylic acids in ambient fine aerosol, which sets the foundation to better understand the atmospheric fate of α-pinene in future studies.


Assuntos
4-Butirolactona/análogos & derivados , Acetatos/química , Monoterpenos/química , Oxigênio/química , 4-Butirolactona/química , Aerossóis , Poluentes Atmosféricos/análise , Monoterpenos Bicíclicos , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Peso Molecular , Monoterpenos/análise , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo
6.
Environ Sci Technol ; 47(8): 3639-47, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23488636

RESUMO

Acidic sulfate particles are known to enhance secondary organic aerosol (SOA) mass in the oxidation of biogenic volatile organic compounds (BVOCs) through accretion reactions and organosulfate formation. Enhanced phase transfer of epoxides, which form during the BVOC oxidation, into the acidified sulfate particles is shown to explain the latter process. We report here a newly identified ozone-driven SOA production chain that increases SOA formation dramatically. In this process, the epoxides interact with acidic sulfate particles, forming a new generation of highly reactive VOCs through isomerization. These VOCs partition back into the gas phase and undergo a new round of SOA forming oxidation reactions. Depending on the nature of the isomerized VOCs, their next generation oxidation forms highly oxygenated terpenoic acids or organosulfates. Atmospheric evidence is presented for the existence of marker compounds originating from this chain. The identified process partly explains the enhanced SOA formation in the presence of acidic particles on a molecular basis and could be an important source of missing SOA precursor VOCs that are currently not included in atmospheric models.


Assuntos
Aerossóis/análise , Compostos Orgânicos/análise , Ozônio/química , Ácidos , Atmosfera/química , Monoterpenos Bicíclicos , Catálise , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Isomerismo , Terpenos/análise , Fatores de Tempo
7.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(17-18): 1402-11, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21411383

RESUMO

Two denuder sampling techniques have been compared for the analysis of gaseous carbonyl compounds. One type of denuder was coated with XAD-4 resin and the other type of denuder was coated with XAD-4 and 2,4-dinitrophenylhydrazine (DNPH) to derivatise gaseous carbonyl compounds to their hydrazone forms simultaneously. A detailed protocol for the denuder coating procedure is described. The collection efficiency under dry (RH <3%) and humid conditions (RH 50%) as well as filter positive artefacts were evaluated. The XAD-4/DNPH coated denuders showed significantly less break-through potential and hence collection than the XAD-4-only coated denuders. The performance of the XAD-4/DNPH denuder was better under humid conditions with no detected break-through for hydroxyacetone, methacrolein, methylglyoxal, campholenic aldehyde and nopinone. Calibration experiments were performed in a simulation chamber and carbonyl-hydrazone concentrations determined in the extracts of both the denuder types were related to the mixing ratios of gaseous carbonyl compounds in the chamber to overcome losses and errors associating with the denuder sampling, extraction and sample preparation. The application of on-tube conversion for the XAD-4/DNPH denuders resulted in higher R(2) values than the XAD-4 denuder, ranging up to 0.991 for nopinone. The XAD-4-only coated denuders showed acceptable calibration curves only for lower vapour pressure carbonyl compounds though larger relative standard deviations (RSD) were observed. Carbonyl compounds that were formed during the oxidation of nopinone were collected using the XAD-4/DNPH denuders. The results showed that the denuder sampling device was able to provide reproducible nopinone mixing ratios that remained in the chamber after about 1h of the oxidation. One isomer of oxo-nopinones was tentatively identified from off-line HPLC/(-)ESI-TOFMS analysis. Based on the TOFMS response of the nopinone-DNPH derivative, the oxo-nopinone molar yield of 0.7±0.1% (n=3) was determined from the reaction of nopinone with OH radicals. Depending on target analytes, accuracy and sensitivity requirements, the present method can be employed for the determination of gaseous carbonyl compounds that are formed during the oxidation of monoterpenes.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Gases/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Fenil-Hidrazinas/química , Poliestirenos/química , Polivinil/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Poluentes Atmosféricos/análise , Cromatografia Líquida de Alta Pressão/métodos , Monitoramento Ambiental/métodos , Gases/análise , Compostos Orgânicos/análise , Volatilização
8.
Environ Sci Technol ; 44(22): 8453-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20964362

RESUMO

Detailed chemical analysis of wintertime PM10 collected at a rural village site in Germany showed the presence of a series of compounds that correlated very well with levoglucosan, a known biomass burning tracer compound. Nitrated aromatic compounds with molecular formula C7H7NO4 (M(w) 169) correlated particularly well with levoglucosan, indicating that they originated from biomass burning as well. These compounds were identified as a series of methyl-nitrocatechol isomers (4-methyl-5-nitrocatechol, 3-methyl-5-nitrocatechol, and 3-methyl-6-nitrocatechol) based on the comparison of their chromatographic and mass spectrometric behaviors to those from reference compounds.Aerosol chamber experiments suggest that m-cresol, which is emitted from biomass burning at significant levels, is a precursor for the detected methyl-nitrocatechols. The total concentrations of these compounds in the wintertime PM10were as high as 29 ng m⁻³, indicating the secondary organic aerosol (SOA) originating from the oxidation of biomass burning VOCs contributed non-negligible amounts to the regional organic aerosol loading.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Catecóis/análise , Monitoramento Ambiental/métodos , Incineração , Nitrocompostos/análise , Aerossóis/química , Poluentes Atmosféricos/química , Atmosfera/química , Biomassa , Catecóis/química , Cresóis/análise , Cresóis/química , Alemanha , Radical Hidroxila/análise , Radical Hidroxila/química , Nitrocompostos/química , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Material Particulado/análise , Processos Fotoquímicos , Estações do Ano
9.
Environ Sci Technol ; 43(18): 6976-82, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19806730

RESUMO

Novel secondary organic aerosol (SOA) products from the monoterpene alpha-pinene with unique dimer-forming properties have been identified as lactone-containing terpenoic acids, i.e., terpenylic and 2-hydroxyterpenylic acid, and diaterpenylic acid acetate. The structural characterizations were based on the synthesis of reference compounds and detailed interpretation of mass spectral data. Terpenylic acid and diaterpenylic acid acetate are early oxidation products generated upon both photooxidation and ozonolysis, while 2-hydroxyterpenylic acid is an abundant SOA tracer in ambient fine aerosol that can be explained by further oxidation of terpenylic acid. Quantum chemical calculations support that noncovalent dimer formation involving double hydrogen bonding interactions between carboxyl groups of the monomers is energetically favorable. The molecular properties allow us to explain initial particle formation in laboratory chamber experiments and are suggested to play a role in new particle formation and growth above forests, a natural phenomenon that has fascinated scientists for more than a century.


Assuntos
4-Butirolactona/análogos & derivados , Acetatos/química , Ácidos Carboxílicos/química , Monoterpenos/química , Material Particulado/síntese química , Árvores/química , 4-Butirolactona/química , Aerossóis/análise , Monoterpenos Bicíclicos , Cromatografia Líquida , Dimerização , Glutaratos , Ligação de Hidrogênio , Oxirredução , Espectrometria de Massas por Ionização por Electrospray
10.
Phys Chem Chem Phys ; 11(36): 7985-97, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19727505

RESUMO

Evidence from field measurements suggests that organosulfates contribute substantially to ambient secondary organic aerosol (SOA) and might dominate a considerable fraction of total sulfur in tropospheric particles. While alcohols and epoxides are suggested to be most likely precursors for organosulfates in SOA, their reactivity in acidic particles and their potential for organosulfate formation are still unclear. In the present study, a series of aerosol chamber experiments was performed to investigate the formation of organosulfates from reactive uptake of monoterpene oxides (alpha-pinene oxide and beta-pinene oxide) and acid catalysed isomerisation compounds of alpha-pinene oxide (campholenic aldehyde and carveol) on neutral and acidic sulfate particles. Organosulfate formation was observed only under acidic conditions for both monoterpene oxides and, to a lesser extent, campholenic aldehyde, indicating that epoxides most likely serve as precursors for some of the organosulfates reported from both ambient and laboratory SOA samples. Structures of organosulfates were elucidated by comparing the tandem mass spectrometric, accurate mass and ion mobility data obtained for both the synthesised reference compounds and aerosol chamber-generated organosulfates. In the experiment performed using beta-pinene oxide and acidic sulfate seed particles, an organosulfate with a sulfate group at a tertiary carbon atom accounts for 64% of the detected organosulfates. In contrast, an organosulfate with a sulfate group at a secondary carbon atom accounts for 80% of the detected organosulfates in the sample from alpha-pinene oxide/acidic sulfate particle experiment. The concentration of beta-pinene-derived organosulfates was higher than known alpha-pinene oxidation products such as pinic acid and pinonic acid in an ambient aerosol sample collected at a Norwegian spruce forest site during the summer time, ranging up to 23 ng m(-3). Furthermore, alpha-pinene oxide is found to isomerise readily on the wet seed particle surface, forming campholenic aldehyde. It is likely that other epoxides also play an important role for the formation of organosulfates under atmospheric conditions, and the isomerisation of epoxides may be an important route for the formation of some SOA constituents whose structures do not resemble precursor volatile organic compounds (VOCs).


Assuntos
Aerossóis/química , Atmosfera/análise , Atmosfera/química , Monoterpenos/química , Compostos Orgânicos/química , Óxidos/química , Material Particulado/química , Sulfatos/química , Físico-Química/instrumentação , Físico-Química/métodos , Gases/química , Laboratórios , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula
11.
Environ Sci Technol ; 43(2): 280-5, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19238952

RESUMO

Detailed organic speciation of summer time PM10 collected in Melbourne, Australia, indicated the presence of numerous monoterpene oxidation products that have previously been reported in the literature. In addition, two highly oxygenated compounds with molecular formulas C9H14O6 (MW 218) and C10H16O6 (MW 232), previously unreported, were detected during a period associated with high temperatures and bushfire smoke. These two compounds were also present in laboratory-produced secondary organic aerosol (SOA) through the reaction of OH radicals with 1,8-cineole (eucalyptol), which is emitted by Eucalyptus trees. The retention times and mass spectral behavior of the highly oxygenated compounds in high-performance liquid chromatography (LC) coupled to electrospray ionization-time-of-flight mass spectrometry (MS) in parallel to ion trap MS of agree perfectly between the ambient samples and the laboratory-produced SOA samples, suggesting that 1,8-cineole is the precursor of the highly oxygenated compounds. The proposed structure of the compound with molecular formula C10H16O6 was confirmed by synthesis of a reference compound. The two novel compounds were identified as diaterebic acid acetate (2-[1-(acetyloxy)-1-methylethyl]succinic acid, C9H14O6) and diaterpenylic acid acetate (3-[1-(acetyloxy)-1-methylethyl]glutaric acid, C10H16O6) based on the consideration of reaction mechanisms, the structure of a reference compound, and the interpretation of mass spectral data. Depending on the experimental conditions, the SOA yields determined in chamber experiments ranged between 16 and 20% for approximately 25 ppb of hydrocarbon consumed. The concentrations of these compounds were as high as 50 ng m(-3) during the summertime in Melbourne. This study demonstrates the importance and influence of local vegetation patterns on SOA chemical composition.


Assuntos
Acetatos/análise , Aerossóis/síntese química , Atmosfera/química , Cicloexanóis/química , Glutaratos/análise , Monoterpenos/química , Succinatos/análise , Acetatos/química , Cromatografia Líquida de Alta Pressão , Eucaliptol , Glutaratos/química , Compostos Orgânicos/análise , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Succinatos/química , Fatores de Tempo
12.
J Phys Chem A ; 111(48): 12099-105, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-17990855

RESUMO

The gas-phase reaction of OH radicals with 1,3-butadiene and 4-hydroxy-2-butenal in the presence of NO has been studied in a flow tube operated at 295 +/- 2 K and pressures of 950 mbar of synthetic air or 100 mbar of an O(2)/He mixture. OH radicals were generated using three different experimental approaches, namely, ozonolysis of tetramethylethylene (dark reaction), photolysis of methyl nitrite, or via the reaction of HO(2) with NO (HO(2) from the reaction of H-atoms with O(2)). Products of the reaction of OH radicals with 1,3-butadiene were HCHO (0.64 +/- 0.08), acrolein (0.59 +/- 0.06), 4-hydroxy-2-butenal (0.23 +/- 0.10), furan (0.046 +/- 0.014), and organic nitrates (0.06 +/- 0.02) accounting for more than 90% of the reacted carbon. There was no significant dependence of product yields on experimental conditions which were varied in a wide range. The formation of the 1,4-addition product 4-hydroxy-2-butenal was confirmed unambiguously for the first time. The rate coefficient k(OH + 4-hydroxy-2-butenal) = (5.1 +/- 0.8) x 10(-11) cm(3) molecule(-1) s(-1) was determined using a relative rate technique (p = 100 mbar, T = 295 +/- 2 K). Products of the reaction of OH radicals with 4-hydroxy-2-butenal were glycolaldehyde (0.40 +/- 0.06), glyoxal (0.17 +/- 0.04), trans-butenedial (0.093 +/- 0.033), and organic nitrates (0.043 +/- 0.015) as well as further carbonylic substances remaining unidentified so far. Corresponding reaction mechanisms describing the formation of the detected products are proposed, and the relevance of these data for atmospheric conditions is discussed.

13.
Environ Sci Technol ; 41(19): 6678-83, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17969680

RESUMO

The formation of organosulfates from the gas-phase ozonolysis of beta-pinene in the presence of neutral or acidic sulfate particles was investigated in a series of indoor aerosol chamber experiments. The organosulfates were analyzed using high-performance liquid chromatography (LC) coupled to electrospray ionization-time-of-flight mass spectrometry (MS) in parallel to ion trap MS. Organosulfates were only found in secondary organic aerosol from beta-pinene ozonolysis in the presence of acidic sulfate seed particles. One of the detected organosulfates also occurred in ambient aerosol samples that were collected at a forest site in northeastern Bavaria, Germany. beta-Pinene oxide, an oxidation product in beta-pinene/O3 and beta-pinene/NO3 reactions, is identified as a possible precursor for the beta-pinene-derived organosulfate. Furthermore, several nitroxy-organosulfates originating from monoterpenes were found in the ambient samples. These nitroxy-organosulfates were only detected in the nighttime samples, suggesting a role for nighttime chemistry in their formation. Their LC/MS chromatographic peak intensities suggest that they represent an important fraction of the organic mass in ambient aerosols, especially at night.


Assuntos
Poluentes Atmosféricos/química , Compostos Bicíclicos com Pontes/química , Monoterpenos/química , Oxidantes/química , Ozônio/química , Sulfatos/química , Aerossóis , Monoterpenos Bicíclicos , Ácidos Sulfúricos/química
14.
Electrophoresis ; 28(9): 1364-70, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17372940

RESUMO

The composition of secondary organic aerosol (SOA) from the gas phase ozonolysis of methylenecyclohexane was analyzed in a series of indoor aerosol chamber experiments. Capillary electrophoresis-electrospray ionization-ion trap mass spectrometry (CE/ESI-ITMS) was used for qualitative and quantitative analysis of SOA constituents. A number of dicarboxylic acids in the range of C(5)-C(6), such as adipic acid and glutaric acid, were found as major components of the organic products. Besides these smaller compounds, the formation of higher-molecular-weight compounds were observed under both neutral and acidic conditions. MS/MS experiments were carried out in order to obtain information on the monomer units and the structure of the dimers. MS(2) experiments of the two most prominent dimers with a mass-to-charge ratio (m/z) of 257 and m/z 273 yielded common fragments of m/z 83, 129 or 145. Based on the fragmentation patterns, these dimers are tentatively identified as carboxylate ester acids containing a unit of adipic acid in the structure. The dimer with m/z 257 was nearly 60% of the total detected compounds for both the neutral and acidic seed particle experiments.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Cicloexenos/química , Compostos Orgânicos/análise , Material Particulado/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Clima , Eletroforese Capilar , Filtração/instrumentação , Filtração/métodos , Modelos Químicos , Ozônio/química , Sensibilidade e Especificidade
15.
Phys Chem Chem Phys ; 8(10): 1205-14, 2006 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-16633601

RESUMO

The gas-phase reaction of OH radicals with benzene has been studied in a flow tube operated at 295 +/- 2 K and 950 mbar of synthetic air or O2. Ozonolysis of tetramethylethylene (dark reaction) with a measured OH radical yield of 0.92 +/- 0.08 or photolysis of methyl nitrite in the presence of NO served as the OH sources. For investigations in the presence of NOx, the conditions were chosen so that more than 95% of the OH/benzene adduct reacted with O2 even for the highest NO2 concentration occurring in the experiment. In the absence of NOx, a phenol yield from the reaction of OH radicals with benzene of 0.61 +/- 0.07 was measured by means of long-path FT-IR and UV spectroscopy over a wide range of experimental conditions. This yield was confirmed by measurements performed in the presence of NOx. Detected carbonyls were glyoxal, cis-butenedial and trans-butenedial with formation yields of 0.29 +/- 0.10, 0.08 +/- 0.03 and 0.023 +/- 0.007, respectively, measured in synthetic air and in the presence of NOx. There was no significant difference in the product yields applying both experimental approaches for OH generation (dark reaction or photolysis). Nitrobenzene and o-nitrophenol were detected in traces. The yield of nitrobenzene increased with increasing NOx resulting in a maximum formation yield of 0.007. The detected products in the presence of NOx account for approximately 78% of the reacted carbon. Butenedial yields from benzene degradation are reported for the first time. In the absence of NOx, glyoxal, cis-butenedial and trans-butenedial were also detected, but with distinctly lower yields compared to the experiments with NOx.

16.
Faraday Discuss ; 130: 279-94; discussion 363-86, 519-24, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16161789

RESUMO

The formation of secondary organic aerosol (SOA) following the ozonolysis of terpene has been investigated intensively in recent years. The enhancement of SOA yields from the acid catalysed reactions of organics on aerosol surfaces or in the bulk particle phase has been receiving great attention. Recent studies show that the presence of acidic seed particles increases the SOA yield significantly (M. S. Jang and R. M. Kamens, Environ. Sci. Technol., 2001, 35, 4758, ref. 1; M. S. Jang, N. M. Czoschke, S. Lee and R. M. Kamens, Science, 2002, 298, 814, ref. 2; N. M. Czoschke, M. Jang and R. M. Kamens, Atmos. Environ., 2003, 37, 4287, ref. 3; M. S. Jang, B. Carroll, B. Chandramouli and R. M. Kamens, Environ. Sci. Technol., 2003, 37, 3828, ref. 4; Y. Iinuma, O. Böge, T. Gnauk and H. Herrmann, Atmos. Environ., 2004, 38, 761, ref. 5; S. Gao, M. Keywood, N. L. Ng, J. Surratt, V. Varutbangkul, R. Bahreini, R. C. Flagan and J. H. Seinfeld, J. Phys. Chem. A, 2004, 108, 10147, ref. 6). More detailed studies report the formation of higher molecular weight products in SOA (refs. 5 and 6; M. P. Tolocka, M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens and M. V. Johnston, Environ. Sci. Technol., 2004, 38, 1428, ref. 7; S. Gao, N. L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J. He, K. Y. Yoo, J. L. Beauchamp, R. P. Hodyss, R. C. Flagan and J. H. Seinfeld, Environ. Sci. Technol., 2004, 38, 6582, ref. 8) which could result in a non-reversible uptake of organics into the particle phase. Most of the past studies concentrated on the characterisation of the yields of enhanced SOA and its composition from ozonolysis of terpenes in the presence or absence of acidic and neutral seed particles. Recent findings from cyclohexene ozonolysis show that the presence of OH scavengers can also significantly influence the SOA yield. Our new results from the IfT chemistry department aerosol chamber on terpene ozonolysis in the presence of OH scavengers show that the presence of hydroxyl radical scavengers clearly reduces the amount of formed SOA. The OH scavenger strongly depletes the formation of oligomeric compounds in the particle phase in contrast to previous findings (M. D. Keywood, J. H. Kroll, V. Varatbangkul, R. Bahreini, R. C. Flagan and J. H. Seinfeld, Environ. Sci. Technol., 2004, 38, 3343, ref. 9). This result indicates that hydroxyl radicals play an important role in the formation of precursor compounds (e.g., hydroxy pinonaldehyde) for the particle phase heterogeneous acid catalysed reactions leading to the higher molecular weight compounds and thus the enhancement of SOA yields. Better understanding of the role of hydroxyl radicals in the formation of SOA is necessary to distinguish between the contribution of ozonolysis and hydroxyl radicals to the SOA yield. If the recent findings are a ubiquitous phenomenon in the atmosphere, current atmospheric and climate models might underestimate SOA formation yields, particle phase OC contents and its impact on the atmospheric radiation budget.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Compostos Orgânicos/química , Terpenos/química , Aldeídos/química , Atmosfera/química , Catálise , Clima , Ciclobutanos/química , Cicloexanos/química , Cicloexenos , Radical Hidroxila/química , Modelos Biológicos , Ozônio/química , Fatores de Tempo
17.
Science ; 307(5710): 698-700, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15692045

RESUMO

We investigated the formation of new particles in a laboratory study, starting from H2SO4 produced in situ through the reaction of OH radicals with SO2. Newly formed particles were observed for H2SO4 concentrations above 7 x 10(6) per cubic centimeter. At 293 kelvin, a rough estimate yielded a nucleation rate of 0.3 to 0.4 particles per cubic centimeter per second for approximately 10(7) particles per cubic centimeter of H2SO4 (particle size >/= 3 nanometers). These findings are in agreement with observations from the atmosphere. The results demonstrate that under laboratory conditions similar to the atmosphere, particle formation occurs at atmospheric H2SO4 concentration levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA