Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1002, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864019

RESUMO

In two-component systems, the information gathered by histidine kinases (HKs) are relayed to cognate response regulators (RRs). Thereby, the phosphoryl group of the auto-phosphorylated HK is transferred to the receiver (Rec) domain of the RR to allosterically activate its effector domain. In contrast, multi-step phosphorelays comprise at least one additional Rec (Recinter) domain that is typically part of the HK and acts as an intermediary for phosphoryl-shuttling. While RR Rec domains have been studied extensively, little is known about discriminating features of Recinter domains. Here we study the Recinter domain of the hybrid HK CckA by X-ray crystallography and NMR spectroscopy. Strikingly, all active site residues of the canonical Rec-fold are pre-arranged for phosphoryl-binding and BeF3- binding does not alter secondary or quaternary structure, indicating the absence of allosteric changes, the hallmark of RRs. Based on sequence-covariation and modeling, we analyze the intra-molecular DHp/Rec association in hybrid HKs.


Assuntos
Histidina Quinase , Cristalografia por Raios X , Histidina Quinase/química
2.
J Med Chem ; 66(5): 3431-3447, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36802665

RESUMO

USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.


Assuntos
Transdução de Sinais , Proteases Específicas de Ubiquitina , Regulação da Expressão Gênica , Endopeptidases
3.
Mol Cell ; 81(11): 2403-2416.e5, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33852892

RESUMO

The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/química , Fator de Iniciação 4E em Eucariotos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteína Regulatória Associada a mTOR/química , Serina-Treonina Quinases TOR/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína , Especificidade por Substrato , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
Nat Microbiol ; 6(1): 59-72, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168988

RESUMO

Bacteria use small signalling molecules such as (p)ppGpp or c-di-GMP to tune their physiology in response to environmental changes. It remains unclear whether these regulatory networks operate independently or whether they interact to optimize bacterial growth and survival. We report that (p)ppGpp and c-di-GMP reciprocally regulate the growth of Caulobacter crescentus by converging on a single small-molecule-binding protein, SmbA. While c-di-GMP binding inhibits SmbA, (p)ppGpp competes for the same binding site to sustain SmbA activity. We demonstrate that (p)ppGpp specifically promotes Caulobacter growth on glucose, whereas c-di-GMP inhibits glucose consumption. We find that SmbA contributes to this metabolic switch and promotes growth on glucose by quenching the associated redox stress. The identification of an effector protein that acts as a central regulatory hub for two global second messengers opens up future studies on specific crosstalk between small-molecule-based regulatory networks.


Assuntos
Caulobacter crescentus/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Guanosina Pentafosfato/metabolismo , Sistemas do Segundo Mensageiro/genética , Transferases/metabolismo , Sítios de Ligação/fisiologia , Ligação Competitiva/fisiologia , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Glucose/metabolismo , Oxirredução , Transdução de Sinais/genética
5.
J Biomol NMR ; 74(8-9): 413-419, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32621004

RESUMO

NMR pseudocontact shifts are a valuable tool for structural and functional studies of proteins. Protein multimers mediate key functional roles in biology, but methods for their study by pseudocontact shifts are so far not available. Paramagnetic tags attached to identical subunits in multimeric proteins cause a combined pseudocontact shift that cannot be described by the standard single-point model. Here, we report pseudocontact shifts generated simultaneously by three paramagnetic Tm-M7PyThiazole-DOTA tags to the trimeric molecular chaperone Skp and provide an approach for the analysis of this and related symmetric systems. The pseudocontact shifts were described by a "three-point" model, in which positions and parameters of the three paramagnetic tags were fitted. A good correlation between experimental data and predicted values was found, validating the approach. The study establishes that pseudocontact shifts can readily be applied to multimeric proteins, offering new perspectives for studies of large protein complexes by paramagnetic NMR spectroscopy.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Proteínas/química , Algoritmos , Modelos Moleculares , Modelos Teóricos , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteínas Recombinantes/química , Relação Estrutura-Atividade
6.
Anal Chem ; 92(11): 7786-7793, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32378880

RESUMO

Lipid bilayer nanodiscs are an attractive tool to study membrane proteins in a detergent-free lipid-bilayer environment. In the case of NMR studies, a sequence-specific resonance assignment is required in order to gain structural and functional insights with atomic resolution. Although NMR backbone assignments of membrane proteins in detergents are available, they are largely absent for membrane proteins in nanodiscs due to unfavorable relaxation properties of the slowly tumbling membrane protein-nanodisc complex. The necessary residue-specific reassignment of resonances in nanodiscs is therefore extremely time and sample consuming and represents the fundamental bottleneck in the application of nanodiscs for NMR studies. Here we present an elegant and fast solution to the problem. We show that a resonance assignment in detergent micelles can be transferred to a spectrum recorded in nanodiscs via detergent titration. The procedure requires that lipid-detergent exchange kinetics are in the fast exchange regime in order to follow linear and nonlinear peak shift trajectories with increasing detergent concentration. We demonstrate the feasibility of the approach on the 148-residue membrane protein OmpX. The titration method is then applied to VDAC, a 19-stranded ß-barrel with 283 residues, for which 67% of the detergent assignment could be transferred to the nanodisc spectrum. We furthermore show that this method also works for the largest currently assigned membrane protein, BamA with 398 residues. The method is applicable for backbone amide and side chain methyl groups and represents a time and cost-effective assignment method, for example, to investigate membrane protein allostery and drug binding in a more natural and detergent-free lipid bilayer.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Detergentes/química , Proteínas de Escherichia coli/análise , Hidrolases/análise , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Canal de Ânion 1 Dependente de Voltagem/análise , Humanos , Nanoestruturas/química
7.
Nat Commun ; 11(1): 816, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041947

RESUMO

Bacteria adapt their growth rate to their metabolic status and environmental conditions by modulating the length of their G1 period. Here we demonstrate that a gradual increase in the concentration of the second messenger c-di-GMP determines precise gene expression during G1/S transition in Caulobacter crescentus. We show that c-di-GMP stimulates the kinase ShkA by binding to its central pseudo-receiver domain, activates the TacA transcription factor, and initiates a G1/S-specific transcription program leading to cell morphogenesis and S-phase entry. Activation of the ShkA-dependent genetic program causes c-di-GMP to reach peak levels, which triggers S-phase entry and promotes proteolysis of ShkA and TacA. Thus, a gradual increase of c-di-GMP results in precise control of ShkA-TacA activity, enabling G1/S-specific gene expression that coordinates cell cycle and morphogenesis.


Assuntos
Caulobacter crescentus/citologia , Caulobacter crescentus/genética , Ciclo Celular/genética , GMP Cíclico/análogos & derivados , Histidina Quinase/metabolismo , Morfogênese/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/crescimento & desenvolvimento , Caulobacter crescentus/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/química , Histidina Quinase/genética , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteólise , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo
8.
Structure ; 28(2): 206-214.e4, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31862297

RESUMO

The voltage-dependent anion channel (VDAC) forms the primary diffusion pore of the outer mitochondrial membrane. In its apo form, VDAC adopts an open conformation with high conductance. States of lower conductance can be induced by ligand binding or the application of voltage. Here, we clarify at the atomic level how ß-NADH binding leads to a low-conductance state and characterize the role of the VDAC N-terminal helix in voltage gating. A high-resolution NMR structure of human VDAC-1 with bound NADH, combined with molecular dynamics simulation show that ß-NADH binding reduces the pore conductance sterically without triggering a structural change. Electrophysiology recordings of crosslinked protein variants and NMR relaxation experiments probing different time scales show that increased helix dynamics is present in the open state and that motions of the N-terminal helices are involved in the VDAC voltage gating mechanism.


Assuntos
NAD/metabolismo , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína
9.
Proc Natl Acad Sci U S A ; 117(2): 1000-1008, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882446

RESUMO

Cytosolic hybrid histidine kinases (HHKs) constitute major signaling nodes that control various biological processes, but their input signals and how these are processed are largely unknown. In Caulobacter crescentus, the HHK ShkA is essential for accurate timing of the G1-S cell cycle transition and is regulated by the corresponding increase in the level of the second messenger c-di-GMP. Here, we use a combination of X-ray crystallography, NMR spectroscopy, functional analyses, and kinetic modeling to reveal the regulatory mechanism of ShkA. In the absence of c-di-GMP, ShkA predominantly adopts a compact domain arrangement that is catalytically inactive. C-di-GMP binds to the dedicated pseudoreceiver domain Rec1, thereby liberating the canonical Rec2 domain from its central position where it obstructs the large-scale motions required for catalysis. Thus, c-di-GMP cannot only stabilize domain interactions, but also engage in domain dissociation to allosterically invoke a downstream effect. Enzyme kinetics data are consistent with conformational selection of the ensemble of active domain constellations by the ligand and show that autophosphorylation is a reversible process.


Assuntos
Caulobacter crescentus/metabolismo , GMP Cíclico/análogos & derivados , Histidina Quinase/química , Histidina Quinase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/genética , Ciclo Celular/fisiologia , Cristalografia por Raios X , GMP Cíclico/química , GMP Cíclico/metabolismo , Histidina Quinase/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Sistemas do Segundo Mensageiro
10.
Elife ; 42015 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-26188084

RESUMO

Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box-peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.


Assuntos
Centríolos/genética , Centríolos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cristalografia por Raios X , Análise Mutacional de DNA , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/química
11.
Nat Commun ; 6: 5907, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25556995

RESUMO

Histo-blood group antigens (HBGAs) have been proposed as rotavirus receptors. H type-1 and Lewis(b) antigens have been reported to bind VP8* from major human rotavirus genotypes P[4], P[6] and P[8], while VP8* from a rarer P[14] rotavirus recognizes A-type HBGAs. However, the role and significance of HBGA receptors in rotavirus pathogenesis remains uncertain. Here we report that P[14] rotavirus HAL1166 and the related P[9] human rotavirus K8 bind to A-type HBGAs, although neither virus engages the HBGA-specific α1,2-linked fucose moiety. Notably, human rotaviruses DS-1 (P[4]) and RV-3 (P[6]) also use A-type HBGAs for infection, with fucose involvement. However, human P[8] rotavirus Wa does not recognize A-type HBGAs. Furthermore, the common human rotaviruses that we have investigated do not use Lewis(b) and H type-1 antigens. Our results indicate that A-type HBGAs are receptors for human rotaviruses, although rotavirus strains vary in their ability to recognize these antigens.


Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Infecções por Rotavirus/fisiopatologia , Rotavirus/metabolismo , Internalização do Vírus , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estrutura Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Infecções por Rotavirus/metabolismo
12.
Nat Commun ; 5: 5750, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25517696

RESUMO

Mammals express the sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) on cell surfaces, where they act as receptors for pathogens, including influenza A virus (IAV). Neu5Gc is synthesized from Neu5Ac by the enzyme cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH). In humans, this enzyme is inactive and only Neu5Ac is produced. Ferrets are susceptible to human-adapted IAV strains and have been the dominant animal model for IAV studies. Here we show that ferrets, like humans, do not synthesize Neu5Gc. Genomic analysis reveals an ancient, nine-exon deletion in the ferret CMAH gene that is shared by the Pinnipedia and Musteloidia members of the Carnivora. Interactions between two human strains of IAV with the sialyllactose receptor (sialic acid--α2,6Gal) confirm that the type of terminal sialic acid contributes significantly to IAV receptor specificity. Our results indicate that exclusive expression of Neu5Ac contributes to the susceptibility of ferrets to human-adapted IAV strains.


Assuntos
Sequência de Bases , Furões/virologia , Oxigenases de Função Mista/química , Ácido N-Acetilneuramínico/metabolismo , Receptores Virais/metabolismo , Deleção de Sequência , Animais , Caniformia/genética , Caniformia/imunologia , Caniformia/virologia , Sequência de Carboidratos , Éxons , Furões/genética , Furões/imunologia , Expressão Gênica , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Oxigenases de Função Mista/deficiência , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/química , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Infecções por Orthomyxoviridae/virologia , Receptores Virais/química , Receptores Virais/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tropismo Viral
13.
J Virol ; 88(8): 4558-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501414

RESUMO

UNLABELLED: N-acetyl- and N-glycolylneuraminic acids (Sia) and α2ß1 integrin are frequently used by rotaviruses as cellular receptors through recognition by virion spike protein VP4. The VP4 subunit VP8*, derived from Wa rotavirus, binds the internal N-acetylneuraminic acid on ganglioside GM1. Wa infection is increased by enhanced internal Sia access following terminal Sia removal from main glycan chains with sialidase. The GM1 ligand cholera toxin B (CTB) reduces Wa infectivity. Here, we found sialidase treatment increased cellular GM1 availability and the infectivity of several other human (including RV-3) and animal rotaviruses, typically rendering them susceptible to methyl α-d-N-acetylneuraminide treatment, but did not alter α2ß1 usage. CTB reduced the infectivity of these viruses. Aceramido-GM1 inhibited Wa and RV-3 infectivity in untreated and sialidase-treated cells, and GM1 supplementation increased their infectivity, demonstrating the importance of GM1 for infection. Wa recognition of α2ß1 and internal Sia were at least partially independent. Rotavirus usage of GM1 was mapped to VP4 using virus reassortants, and RV-3 VP8* bound aceramido-GM1 by saturation transfer difference nuclear magnetic resonance (STD NMR). Most rotaviruses recognizing terminal Sia did not use GM1, including RRV. RRV VP8* interacted minimally with aceramido-GM1 by STD NMR. Unusually, TFR-41 rotavirus infectivity depended upon terminal Sia and GM1. Competition of CTB, Sia, and/or aceramido-GM1 with cell binding by VP8* from representative rotaviruses showed that rotavirus Sia and GM1 preferences resulted from VP8*-cell binding. Our major finding is that infection by human rotaviruses of commonly occurring VP4 serotypes involves VP8* binding to cell surface GM1 glycan, typically including the internal N-acetylneuraminic acid. IMPORTANCE: Rotaviruses, the major cause of severe infantile gastroenteritis, recognize cell surface receptors through virus spike protein VP4. Several animal rotaviruses are known to bind sialic acids at the termini of main carbohydrate chains. Conversely, only a single human rotavirus is known to bind sialic acid. Interestingly, VP4 of this rotavirus bound to sialic acid that forms a branch on the main carbohydrate chain of the GM1 ganglioside. Here, we use several techniques to demonstrate that other human rotaviruses exhibit similar GM1 usage properties. Furthermore, binding by VP4 to cell surface GM1, involving branched sialic acid recognition, is shown to facilitate infection. In contrast, most animal rotaviruses that bind terminal sialic acids did not utilize GM1 for VP4 cell binding or infection. These studies support a significant role for GM1 in mediating host cell invasion by human rotaviruses.


Assuntos
Gangliosídeos/metabolismo , Integrina alfa2beta1/metabolismo , Ácidos Neuramínicos/metabolismo , Receptores Virais/metabolismo , Infecções por Rotavirus/metabolismo , Rotavirus/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Humanos , Integrina alfa2beta1/genética , Ácido N-Acetilneuramínico/metabolismo , Ligação Proteica , Receptores Virais/genética , Rotavirus/genética , Infecções por Rotavirus/genética , Infecções por Rotavirus/virologia
14.
Chembiochem ; 14(15): 1949-53, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24009103

RESUMO

Highly disciplined transfers: Polysialyltransferases are important enzymes responsible for the biosynthesis of α-linked polysialic acids. We used a multidisciplinary approach, and propose the first substrate-binding model for a bacterial polysialyltransferase. Furthermore, we identify key amino acid residues involved in catalysis.


Assuntos
Modelos Moleculares , Sialiltransferases/química , Sialiltransferases/metabolismo , Biologia Computacional , Mutagênese Sítio-Dirigida , Neisseria meningitidis/enzimologia , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Sialiltransferases/genética
15.
J Med Chem ; 55(20): 8963-8, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23017008

RESUMO

A series of C3 O-functionalized 2-acetamido-2-deoxy-Δ4-ß-D-glucuronides were synthesized to explore noncharge interactions in subsite 2 of the influenza virus sialidase active site. In complex with A/N8 sialidase, the parent compound (C3 OH) inverts its solution conformation to bind with all substituents well positioned in the active site. The parent compound inhibits influenza virus sialidase at a sub-µM level; the introduction of small alkyl substituents or an acetyl group at C3 is also tolerated.


Assuntos
Acetamidas/química , Antivirais/química , Glucuronídeos/química , Neuraminidase/química , Orthomyxoviridae/enzimologia , Acetamidas/síntese química , Domínio Catalítico , Ensaios Enzimáticos , Fluorometria , Glucuronídeos/síntese química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Neuraminidase/antagonistas & inibidores , Eletricidade Estática , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...